Self Studies

Logarithm and Antilogarithm Test 5

Result Self Studies

Logarithm and Antilogarithm Test 5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle \left \{ \left ( \frac{5}{3} \right )^{15} \right \}^0$$ is equal to
    Solution
    Anything raised to the power of 0 equals 1
  • Question 2
    1 / -0
    State true or false:
    $$\displaystyle \left ( \frac{2}{3} \right )^{4} \div \left ( \frac{2}{3} \right )^{6} = \left ( \frac{2}{3} \right )^{2}$$
    Solution
    $$\left(\cfrac { 2 }{ 3 } \right)^{ 4 }\div \left(\cfrac { 2 }{ 3 } \right)^{ 6 }=\left(\cfrac { 2 }{ 3 } \right)^{ 4 } \times \left(\cfrac { 2 }{ 3 } \right)^{ -6 }=\left(\cfrac { 2 }{ 3 } \right)^{ 4-6 }=\left(\cfrac { 2 }{ 3 } \right)^{ -2 }$$
  • Question 3
    1 / -0
    State true or false: $$\displaystyle \left [ \left ( \frac{3}{7} \right )^{2}\right ]^3 = \left ( \frac{3}{7} \right )^{5}$$
    Solution
    $$\left[\left(\cfrac { 3 }{ 7 } \right)^{ 2 }\right]^{ 3 }=\left(\cfrac { 3 }{ 7 } \right)^{ 2 \times 3 }=\left(\cfrac { 3 }{ 7 } \right)^{ 6 }$$
  • Question 4
    1 / -0
    State true or false: $$\displaystyle \left ( \frac{-7}{9} \right )^{2} \div \frac{49}{81} = - 1$$
    Solution
    $$\left(\cfrac { -7 }{ 9 } \right)^{ 2 }\div \cfrac { 49 }{ 81 } =\left(\cfrac { -1 \times 7 }{ 9 } \right)^{ 2 }\times \left(\cfrac { 7 }{ 9 } \right)^{ -2 }=\left(\cfrac { 7 }{ 9 } \right)^{ 2-2 }=1$$
    Here, $$\left(\cfrac { -7 }{ 9 } \right)^{ 2 }=\left(\cfrac { 7 }{ 9 } \right)^{ 2 }$$
    (As the square of $$-ve$$ sign number, will give a positive number)
  • Question 5
    1 / -0
    Which expression is equivalent to 81?
    Solution
    $$({ \frac { 1 }{ 3 } ) }^{ -4 }\quad =\quad 3^{ 4 }\quad =\quad 81$$
  • Question 6
    1 / -0
    $$\displaystyle \left ( \frac{1}{3} \right )^{7-7} = 2^0$$
    Solution
    7-7 = 0,
    anything raised to the power of 0 equals 1
  • Question 7
    1 / -0
    The value of $$\displaystyle \left ( \frac{5}{3} \right )^{-8} \div \left ( \frac{5}{3} \right )^{-8}$$ is equal to
    Solution
    According to the properties of exponents,
    $$\dfrac{a^m}{a^n}=a^{m-n}$$
    According to the given condition,

    $$\left(\cfrac { 5 }{ 3 } \right)^{ -8 }\div \left(\cfrac { 5 }{ 3 } \right)^{ -8 }=\left(\cfrac { 5 }{ 3 } \right)^{ -8-(-8) } \\= \left(\cfrac { 5 }{ 3 } \right)^{ 0 } \\=1$$
  • Question 8
    1 / -0
    Which of the following expresses zero law of exponents?
    Solution
    According to the zero law of exponents, 
    any non - zero number raised to the power of zero is equal to $$1$$.
    $$\therefore x^{0} = 1$$, where $$x\neq 0$$
    So, option $$B$$ is correct.
  • Question 9
    1 / -0
    The value of $$(2^0 - 3^0) \times 4^2$$ is---
    Solution
    $$(2^0 - 3^0) \times 4^2\\ = (1 - 1) \times 4^2\\ = 0\times 16\\=0$$
  • Question 10
    1 / -0
    If $$\displaystyle \log x=n$$ then 2n is equal to
    Solution
    Given , $$\log x = n $$
    We know that $$\log x^{2} = 2 \log x$$ 
    $$\Rightarrow 2n = 2 \log x = \log x^{2}$$
    Or $$ \log x^{2} = 2 \log x = 2n$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now