Self Studies

Logarithm and Antilogarithm Test 7

Result Self Studies

Logarithm and Antilogarithm Test 7
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$21^{0}$$ is _____.
    Solution
    $$21^{0} = 1$$
    $$\because a^{0} = 1$$ 
    This is the law for zero exponent.
    So, option $$C$$ is correct.
  • Question 2
    1 / -0
    The value of $$((6)^{0} + (16)^{0}) \div ((7)^{0} + (17)^{0})$$ is _____
    Solution
    $$((6)^{0} + (16)^{0}) \div ((7)^{0} + (17)^{0})$$
    $$ = (1 + 1)\div (1 + 1)$$
    $$= 2\div 2$$
    $$= 1$$
    So, option $$C$$ is correct.
  • Question 3
    1 / -0
    The value of $$(100)^{0}$$ is _____.
    Solution
    According to the law of power of $$0$$,
    $$(100)^{0} = 1$$.

    So, option $$A$$ is correct.
  • Question 4
    1 / -0
    Evaluate: $$({(10)^0} + (12)^{0})\times (18)^{0}$$
    Solution
    $$((10)^{0} + (12)^{0})\times (18)^{0} = (1 + 1) \times 1$$
    $$= (2)\times 1$$
    $$= 2$$
    So. option $$C$$ is correct.
  • Question 5
    1 / -0
    What is the value of $$[\log_{10} (5\log_{10} 100)]^{2}$$?
    Solution
    The value of $$[\log_{10}(5\log_{10} 100)]^{2}$$ is
    $$=[\log_{10}(5\log_{10}10^2)]^2$$
    $$=[\log_{10}(10\log_{10}10)]^2$$     .....As $$\log a^m=m\log a$$
    $$=[\log_{10}(10\times 1)]^2$$     ....As $$\log_aa=1$$
    $$=[\log_{10}10]^2$$
    $$=[1]^2=1$$
  • Question 6
    1 / -0
    Given that $$2^h\times 2^3 = 2^9$$, find the value of h.
    Solution
    $$2^{h}\times 2^{3}=2^{9}$$ 
    $$\Rightarrow 2^{h+3}=2^{9}$$ 
    $$\Rightarrow h+3=9$$
    $$\Rightarrow \boxed{h=6}$$
  • Question 7
    1 / -0
    The value of $$\dfrac{8^5.9^4}{2^{12}.3^6}$$ is
    Solution
    The value of $$\dfrac { { 8 }^{ 5 }{ 9 }^{ 4 } }{ { 2 }^{ 12 }{ 3 }^{ 6 } } $$
    $$=\dfrac { { 2 }^{ 15 }{ 3 }^{ 8 } }{ { 2 }^{ 12 }{ 3 }^{ 6 } } $$
    $$={ 2 }^{ (15-12) }{ 3 }^{ (8-6) }$$
    $$={ 2 }^{ 3 }{ 3 }^{ 2 }$$
    $$=72$$
  • Question 8
    1 / -0
    Find the correct expression, if $$\log _{ c }{ a } =x$$.
    Solution
    Given, $$\log _c a=x$$
    Taking antilog, we get
     $$c^x = a$$.
  • Question 9
    1 / -0
    Which one of the following is the value of $$(101)^{0}$$?
    Solution
    $$101^{0} = 1$$

    So, option $$D$$ is correct.
  • Question 10
    1 / -0
    The value of $$x$$ satisfying $$\log _{ 243 }{ x } =0.8$$
    Solution
    $$\log_{243}x=0.8$$
    $$\Rightarrow x=243^{0.8}$$
    $$\Rightarrow x=81$$
    Hence, A is the correct option.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now