Self Studies

Logarithm and Antilogarithm Test 8

Result Self Studies

Logarithm and Antilogarithm Test 8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Simplify:
    $$\left( { 4 }^{ -1 }\times { 3 }^{ -1 } \right) \div { 6 }^{ -1 }$$
    Solution
    we know,

    $$a^m*b^m = (ab)^m$$
    so,

    $$4^{-1} * 3^{-1} = 12^{-1}$$

    we know,

    $$\dfrac{a^{-m}}{b^{-m}}=(\dfrac{a}{b})^{-m}=(\dfrac{b}{a})^{m}$$
    so,
    $$\dfrac{12^{-1}}{6^{-1}}=2^{-1}=\dfrac{1}{2}$$







  • Question 2
    1 / -0
    Simplify and give reasons:
    $${(-2)}^{7}$$
    Solution
    $$(-2)^7$$

    $$=(-1*2)^7$$

    $$=(-1)^7(2)^7$$                      $$\because (ab)^m=a^m*b^m$$

    $$=-1*2^7$$

    $$=-2^7$$

    $$=-128$$
  • Question 3
    1 / -0
    Simplify the following:
    $${ (-2) }^{ 7 }\times { (-2) }^{ 3 }\times { (-2) }^{ 4 }$$
    Solution
    we know,

    $$a^{m}*a^{n}=a^{m+n}$$

    $$\implies$$ $$a^{m}*a^{n}*a^{p}=a^{m+n+p}$$
    so,

    $${ (-2) }^{ 7 }\times { (-2) }^{ 3 }\times { (-2) }^{ 4 }$$

    $$=(-2)^{7+3+4}$$

    $$=(-2)^{14}$$
  • Question 4
    1 / -0
    Simplify and give reasons:
    $$\cfrac { { 3 }^{ -2 } }{ 3 } \times \left( { 3 }^{ 0 }-{ 3 }^{ -1 } \right) $$
    Solution

  • Question 5
    1 / -0
    Simplify the following:
    $${ \left( \cfrac { 1 }{ 2 }  \right)  }^{ 4 }\times { \left( \cfrac { 1 }{ 2 }  \right)  }^{ 5 }\times { \left( \cfrac { 1 }{ 2 }  \right)  }^{ 6 }$$
    Solution
    we know,
    $$a^{m}*a^{n}=(a)^{m+n}$$
    so,
    $${ \left( \cfrac { 1 }{ 2 }  \right)  }^{ 4 }\times { \left( \cfrac { 1 }{ 2 }  \right)  }^{ 5 }$$
    $$=\left(\cfrac12\right)^6$$
    so,

    $${ \left( \cfrac { 1 }{ 2 }  \right)  }^{ 4+5+6 } $$
    $$=\left(\cfrac12\right)^{15}$$
  • Question 6
    1 / -0
    Simplify and give reasons:
    $$\left[ { \left( \cfrac { 3 }{ 2 }  \right)  }^{ -2 } \right] ^{ 2 }$$
    Solution
    we know that,

    $$\because (a^m)^n=a^{mn}$$

    so,

    $$((\dfrac32)^{-2})^2=(\dfrac32)^{-4}$$
    we also know

    $$\because (\dfrac{a}{b})^{-m}=(\dfrac{b}{a})^m$$

    $$=(\dfrac23)^4$$

    $$=\dfrac{16}{81}$$
















  • Question 7
    1 / -0
    Simplify and give reasons:
    $${(-3)}^{-4}$$
    Solution
    $$(-3)^{-4}$$

    $$=(-1*3)^{-4}$$

    $$=(-1)^{-4}(3)^{-4}$$                      $$\because (ab)^m=a^m*b^m$$
    $$=1*3^{-4}$$

    $$=3^{-4}$$                                    $$\because a^{-m}=\dfrac1{a^m}$$

    $$=(\dfrac13)^4$$

    $$=\dfrac1{81}$$
  • Question 8
    1 / -0
    Simplify:
    $$\left[ { \left( \cfrac { 3 }{ 5 }  \right)  }^{ -2 }\div { \left( \cfrac { 4 }{ 5 }  \right)  }^{ -3 } \right] \times { { \left( \cfrac { 3 }{ 5 }  \right)  } }^{ -2 }$$
    Solution

  • Question 9
    1 / -0
    Exponential form of $$\log_{4}8 = x$$ is _____
    Solution
    We have, $$\log_{4}{8}=x$$

    If $$ \log_{b}{a}=x$$ then $$a={b}^{x}$$

    So, $${4}^{x}=8$$ is the correct answer.

    Option $$C$$ is the correct answer.
  • Question 10
    1 / -0
    The logarithmic form of $${5}^{2}=25$$ is
    Solution
    $$5^2=25$$
    Taking log with base $$5$$ both sides, we get
    $$\log_55^2=\log_525$$
    $$\Rightarrow \log_525=2\log_55$$
    $$\Rightarrow \log_525=2$$     $$(\log_aa=1)$$
    Hence, C is the correct option.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now