$${\textbf{Step - 1: Framing the formula for finding the rate
of decrease}}{\text{.}}$$
$${\text{Let the rate of
increase in the population be }}r,$$
$${\text{We know, population
increases geometrical progression so, we}}$$
$${\text{will use the
compound interest formula}}{\text{.}}$$
$${\text{Given}},{\text{
}}P{\text{ }} = {\text{ }}16,000$$
$${\text{Time period
}},{\text{ }}n{\text{ }} = {\text{ }}2$$
$${\text{Population after
}}2{\text{ yrs }},{\text{ }}A{\text{ }} = {\text{ }}17640$$
$${\text{Using the formula
of compound interest, we can write}}$$
$$A = P{\left( {1 + \dfrac{r}{{100}}}
\right)^n}$$
$$17640 = 16000{\left( {1 + \dfrac{r}{{100}}}
\right)^2}$$
$${\textbf{Step - 2: Solving the above equation to find the
rate of decrease}}{\text{.}}$$
$$\dfrac{{17640}}{{16000}} =
{\left( {1 + \dfrac{r}{{100}}} \right)^2}$$
$$\dfrac{{441}}{{400}} =
{\left( {1 + \dfrac{r}{{100}}} \right)^2}$$
$${\text{Taking square root
on both the sides,}}$$
$$\dfrac{{21}}{{20}} = 1 + \dfrac{r}{{100}}$$
$$\dfrac{1}{{20}} = \dfrac{r}{{100}}$$
$$r = 5% $$
$${\textbf{Hence, the rate of decrease of population is 5% }}{\text{.}}$$