Self Studies

Straight Lines Test 20

Result Self Studies

Straight Lines Test 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the following question, the numbers/letters are arranged based on some pattern or principle. Choose the correct answer for the term marked by the symbol (?)

    Solution
    $$\rightarrow 1^2+1=2,\;3^2+1=10,\;5^2+1=26$$
    $$\rightarrow 2^2+1=5,\;4^2+1=17,\;6^2+1=37$$
    $$\rightarrow 5^2+1=26,\;7^2+1=50,\;9^2+1=82$$
  • Question 2
    1 / -0

    Directions For Questions

    In this type of questions certain numbers are given, out of which all except one are alike in some manner while one is different, and this number is the answer.

    ...view full instructions

    Choose the one which is different from other
    Solution
    Only 119 has different factors 7 and 17 and no factor  is repeated
  • Question 3
    1 / -0
    Find the missing letters
    A, B, D, G, .....
    Solution
    Pattern is $$\displaystyle  ^{1}A,^{1}A+1,^{2}B+2,^{4}D+3,^{7}G+4,^{11}K$$ 
    $$\displaystyle \therefore $$ Missing letter = K
  • Question 4
    1 / -0
    Find the missing letters
    M, N, O, L, R, I, V, ........
    Solution
    Pattern is combination of two patterns M, O, R, V, A, .... and N, L, I, H, .......
    $$\displaystyle ^{13}M,^{14}N,^{15}O,^{11}L,^{18}R,^{9}I,^{22}V,^{8}H,$$ .....
    $$\displaystyle \therefore $$ Missing letter = H
  • Question 5
    1 / -0
    The area of triangle formed by $$(0, 0), (0, a)$$ and $$(b, 0)$$ is .......... .
    Solution
    The area of a triangle formed by joining the points $$(x_1, y_1)$$, $$(x_2, y_2)$$ and $$(x_3, y_3)$$ is

    $$A=\dfrac { 1 }{ 2 } \bigg| { y }_{ 1 }({ x }_{ 2 }-{ x }_{ 3 })+{ y }_{ 2 }({ x }_{ 3 }-{ x }_{ 1 })+{ y }_{ 3 }({ x }_{ 1 }-{ x }_{ 2 }) \bigg|$$

    Therefore, the area of a triangle formed by joining the points $$(0, 0)$$, $$(0, a)$$ and $$(b, 0)$$ is:

    $$A=\dfrac { 1 }{ 2 } \bigg| 0(0-b)+a(b-0)+0(0-0) \bigg| $$

         $$=\dfrac { 1 }{ 2 } \bigg| 0+ab \bigg| $$

         $$=\bigg| \dfrac { ab }{ 2 }  \bigg|$$
     
    Hence, the area of the triangle is $$\left| \dfrac { ab }{ 2 }  \right|$$  
  • Question 6
    1 / -0
    The midpoints of the sides of triangle $$ABC$$ are $$ (-1,-2), (6,1)$$ and $$(3,5) $$. The area of $$\displaystyle \triangle ABC$$ is ____ square units.
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    Area $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] $$
    Area of triangle formed with midpoints
    $$\displaystyle =\frac{1}{2}\left [ -1\left ( 1-5 \right )+6\left ( 5+2 \right )+3\left ( -2-1 \right ) \right ]$$
    $$\displaystyle =\frac{37}{2}$$
    $$\displaystyle \therefore $$ Area of $$\displaystyle \Delta ABC=4\times \frac{37}{2}=74$$ square units.  
    $$[\because$$ Area of triangle formed by joining mid-points of the sides of given triangle is $$\left(\dfrac{1}{4}\right)^{th}$$ of the area of original triangle $$]$$
  • Question 7
    1 / -0
    There is no symmetry in symmetry in legs of Fig
    Solution
    There is no symmetry in legs of Fig.(e)
  • Question 8
    1 / -0
    $$L, M$$ and $$N$$ are the midpoints of the sides $$BC, CA$$ and $$AB$$ respectively of triangle $$ABC$$. If the vertices are $$A(3,-4), B(5,-2)$$ and $$C(1,3)$$ the area of $$\displaystyle \triangle LMN$$ is ____ square units.
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] $$

    Let $$(x_1,y_1)$$ $$=(3,-4)$$, $$(x_2,y_2)$$ $$=(5,-2)$$ and $$(x_3,y_3)$$ $$=(1,3)$$

    Area of $$\displaystyle \Delta ABC=\dfrac{1}{2}\left [ 3\left ( -2-3 \right )+5\left ( 3+4 \right )+1\left ( -4+2 \right ) \right ]$$ 

    $$=\dfrac{1}{2}\left ( -15+35-2 \right )$$

    $$=9$$
    $$\displaystyle \therefore $$ Area of $$\displaystyle \Delta LMN=\frac{1}{4}\times 9=2.25$$ square units.
  • Question 9
    1 / -0
    - T - CN - P - NT - C
    Solution
    The series is N T P C / N T P C / N T P C
  • Question 10
    1 / -0
    The area of the triangle formed by the points $$(2, 6), (10, 0)$$ and $$(0, k)$$ is zero square units. Find the value of $$k.$$
    Solution
    The area of the triangle is:

    $$A=\dfrac { 1 }{ 2 } \left| { y }_{ 1 }({ x }_{ 2 }-{ x }_{ 3 })+{ y }_{ 2 }({ x }_{ 3 }-{ x }_{ 1 })+{ y }_{ 3 }({ x }_{ 1 }-{ x }_{ 2 }) \right|$$

    We are given that the area of the triangle is $$0$$ and the points are $$(2,6)$$, $$(10,0)$$ and $$(0,k)$$, therefore,

    $$\Rightarrow 0=\dfrac { 1 }{ 2 } \left| 6(10-0)+0(0-2)+k(2-10) \right| \\ \Rightarrow 0=\dfrac { 1 }{ 2 } \left| 60-0-8k \right| \\ \Rightarrow 0=\dfrac { 1 }{ 2 } \left| 60-8k \right| $$

    $$\Rightarrow 60-8k=0\\ \\ \Rightarrow 8k=60\\ \Rightarrow k=\dfrac { 60 }{ 8 } =\dfrac { 15 }{ 2 }$$
     
    Hence, $$k=\dfrac { 15 }{ 2 }$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now