Self Studies

Permutations and Combinations Test 22

Result Self Studies

Permutations and Combinations Test 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    There is no symmetry in symmetry in legs of Fig
    Solution
    There is no symmetry in legs of Fig.(e)
  • Question 2
    1 / -0
    Area of triangle whose vertices are $$(0, 0), (2, 3), (5, 8)$$ is ____ square units.
    Solution
    Area of the triangle with three vertices $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$ is
    $$A=\dfrac { 1 }{ 2 } \left| { y }_{ 1 }({ x }_{ 2 }-{ x }_{ 3 })+{ y }_{ 2 }({ x }_{ 3 }-{ x }_{ 1 })+{ y }_{ 3 }({ x }_{ 1 }-{ x }_{ 2 }) \right|$$
    Therefore, the area of triangle with vertices $$(1,2)$$, $$(3,4)$$ and $$(5,6)$$ is:
    $$A=\dfrac { 1 }{ 2 } \left| 0(2-5)+3(5-0)+8(0-2) \right| =\dfrac { 1 }{ 2 } \left| 0+15-16 \right| =\dfrac { 1 }{ 2 } \left| -1 \right| =\dfrac { 1 }{ 2 }$$       
    Hence, the area of the triangle is $$\dfrac { 1 }{ 2 }$$ square units.
  • Question 3
    1 / -0
    The area of a triangle with the vertices $$(1, 2), (3, 4)$$ and $$(5, 6)$$, is ____ square units.
    Solution
    Area of the triangle with three vertices $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$ is

    $$A=\dfrac { 1 }{ 2 } \left| { y }_{ 1 }({ x }_{ 2 }-{ x }_{ 3 })+{ y }_{ 2 }({ x }_{ 3 }-{ x }_{ 1 })+{ y }_{ 3 }({ x }_{ 1 }-{ x }_{ 2 }) \right|$$

    Therefore, the area of triangle with vertices $$(1,2)$$, $$(3,4)$$ and $$(5,6)$$ is:

    $$A=\dfrac { 1 }{ 2 } \left| 2(3-5)+4(5-1)+6(1-3) \right| =\dfrac { 1 }{ 2 } \left| -4+16-12 \right| =\dfrac { 1 }{ 2 } \left| 16-16 \right| =\dfrac { 1 }{ 2 } \left| 0 \right| =0$$

    Hence, the area of the triangle is $$0$$.
  • Question 4
    1 / -0
    In how many ways can 3 diamond cards be drawn simultaneously from a pack of cards?
    Solution
    Pack of cards $$52$$ 
    Diamond cards are $$13$$
    To select $$3$$ cards 
    Total number of  choices =$$^{ 13 }C_{ 3 }$$
    $$= \dfrac { 13\times 12\times 11 }{ 3\times 2\times 1 } \\ = 143\times 2\\ = 286$$
    Hence $$286$$ ways are possible and is a correct answer.
  • Question 5
    1 / -0
    Find the area of $$\Delta ABC$$, in which $$A = (2, 1), B = (3, 4)$$ and $$C = (-3, -2).$$
    Solution
    Area of triangle with vertices $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$ is:
    $$A=\dfrac { 1 }{ 2 } \left| x_{ 1 }(y_{ 2 }-y_{ 3 })+x_{ 2 }(y_{ 3 }-y_{ 1 })+x_{ 3 }(y_{ 1 }-y_{ 2 }) \right|$$
    Therefore, the area of triangle with vertices $$(2,1)$$, $$(3,4)$$ and $$(-3,-2)$$ is:
    $$A=\displaystyle \frac { 1 }{ 2 } \left| 2(4-(-2))+3(-2-1)-3(1-4) \right| $$
    $$=\dfrac { 1 }{ 2 } \left| 2(6)+3(-3)-3(-3) \right| $$
    $$=\dfrac { 1 }{ 2 } \left| 12-9+9 \right|$$
    $$ =\dfrac { 1 }{ 2 } \left| 12 \right| =6$$ square units.
  • Question 6
    1 / -0
    The area of the triangle formed by the points $$(2, 6), (10, 0)$$ and $$(0, k)$$ is zero square units. Find the value of $$k.$$
    Solution
    The area of the triangle is:

    $$A=\dfrac { 1 }{ 2 } \left| { y }_{ 1 }({ x }_{ 2 }-{ x }_{ 3 })+{ y }_{ 2 }({ x }_{ 3 }-{ x }_{ 1 })+{ y }_{ 3 }({ x }_{ 1 }-{ x }_{ 2 }) \right|$$

    We are given that the area of the triangle is $$0$$ and the points are $$(2,6)$$, $$(10,0)$$ and $$(0,k)$$, therefore,

    $$\Rightarrow 0=\dfrac { 1 }{ 2 } \left| 6(10-0)+0(0-2)+k(2-10) \right| \\ \Rightarrow 0=\dfrac { 1 }{ 2 } \left| 60-0-8k \right| \\ \Rightarrow 0=\dfrac { 1 }{ 2 } \left| 60-8k \right| $$

    $$\Rightarrow 60-8k=0\\ \\ \Rightarrow 8k=60\\ \Rightarrow k=\dfrac { 60 }{ 8 } =\dfrac { 15 }{ 2 }$$
     
    Hence, $$k=\dfrac { 15 }{ 2 }$$.
  • Question 7
    1 / -0
    In a certain language '$$ \displaystyle +\div ?   $$' means 'where are you' , '$$ \displaystyle @-\div    $$' means ' we are here' , and '$$ \displaystyle +@\times    $$' means ' you come here' What is the code for ' Where' ?
    Solution
    s.no                        code                                                 sentence 
    1.                   $$ \displaystyle '+\div ?'    $$                                                  Where are you
    2.                   $$ \displaystyle '@-\div '    $$                                                 We are here
    3.                   $$ \displaystyle '+@\times    $$                                                   you come here

    As we can see that where is only in sentence $$1$$ [Where is the word for which we have to find the code ] Therefore we need to gather the codes for $$are$$ & $$you$$ to find out the code for where sentence 1 & 2 have the word $$are$$ in common and the symbol  $$ \displaystyle \div    $$ in common Therefore $$ \displaystyle \div    $$ is the symbol for $$are$$ 
    Sentence 1 & 3 have the word you in common and the symbol + in common therefore + stands for $$you$$ 

    thus, leaving only ?, which stands for $$where$$
  • Question 8
    1 / -0
    Area of a triangle whose vertices are (0, 0), (2, 3) , (5, 8) is _______ square units.
    Solution
    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y }_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3 })$$  is $$ \left| \frac { { x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{ 3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$


    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (0,0) $$ ; $$({ x }_{ 2 },{ y }_{ 2 }) = (2,3) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (5,8)$$ in the area formula, we get

    Area of triangle ABC  $$ = \left| \frac {  (0)(3-8)+(2)(8-0)+5(0-3) }{ 2 }  \right|  = \left| \frac { 16 -15 }{ 2 }  \right|  = \frac {1}{2} units $$

  • Question 9
    1 / -0

    Directions For Questions

    In a certain code, ' il be pee ' means 'roses are blue', silk hee means ' red flowers' and ' pee mit hee' means ' flowers are vegctables'

    ...view full instructions

    How is 'red written in that code ?
    Solution
    Type Direct coding (Jumbled fashion)
    S.no.                     code                            sentence
    1.                       il be pee                        roses are blue
    2.                       silk hee                          red flowers
    3.                      pee mit hee                     Flowers are Vegetables 
    common word in sentences 1 & 3 $$ \displaystyle \rightarrow     $$ 'are' and code $$ \displaystyle \rightarrow     $$ 'pee'
    common word in sentences 2 & 3 $$ \displaystyle \rightarrow     $$ flowers and code $$ \displaystyle \rightarrow     $$ 'hee' 
    Therefore 
    Codes                              words
    pee                                    are
    hee                                  flowers
    silk                                    red
    niit                                   vegetables
    il                                     roses/ blue
    be                                     blue./ rose
  • Question 10
    1 / -0

    Directions For Questions

    In a certain code, ' il be pee ' means 'roses are blue', silk hee means ' red flowers' and ' pee mit hee' means ' flowers are vegctables'

    ...view full instructions

    How is 'roses' written in that code?
    Solution
    Type Direct coding (Jumbled fashion)
    S.no.                     code                            sentence
    1.                       il be pee                        roses are blue
    2.                       silk hee                          red flowers
    3.                      pee mit hee                     Flowers are Vegetables 
    common word in sentences 1 & 3 $$ \displaystyle \rightarrow     $$ 'are' and code $$ \displaystyle \rightarrow     $$ 'pee'
    common word in sentences 2 & 3 $$ \displaystyle \rightarrow     $$ flowers and code $$ \displaystyle \rightarrow     $$ 'hee' 
    Therefore 
    Codes                              words
    pee                                    are
    hee                                  flowers
    silk                                    red
    niit                                   vegetables
    il                                     roses/ blue
    be                                     blue./ rose
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now