Self Studies

Permutations and Combinations Test 31

Result Self Studies

Permutations and Combinations Test 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$15! =2^{\alpha}\cdot 3^{\beta}\cdot 5^{\gamma}\cdot 7^{\delta}\cdot 11^{\theta}\cdot 13^{\Phi}$$, then the value of expression $$\alpha -\beta +\gamma -\delta +\theta -\Phi$$ is
    Solution
    $$15!=1\times 2\times 3\times 4 \times 5\times 6\times 7\times 8\times 9\times 10\times 11\times 12\times 13\times 14\times 15$$

    $$15!=2\times 3\times 2^2 \times 5\times 3\times 2 \times 7\times 2^3\times 3^2\times 2\times 5\times 11\times 3\times 2^2 \times 13\times 2\times 7 \times 3\times 5$$

    $$15!=2^{11}\times 3^6\times 5^3\times 7^ 2\times 11\times 13 $$

    $$\implies \alpha =11$$

    $$\implies \beta =6$$

    $$\implies \gamma=3$$

    $$\implies \delta =2$$

    $$\implies \theta =1$$

    $$\implies \Phi=1$$

    $$\alpha-\beta+\gamma-\delta+\theta-\Phi=11-6+3-2+1-1=6$$
  • Question 2
    1 / -0
    Geometric mean of $$7,\ { 7 }^{ 2 },\ { 7 }^{ 3 }....{ 7 }^{ n }$$ is
    Solution
    $$Gm$$ of two no $$a$$ & $$b=\sqrt {ab}$$
    For $$aGP$$
    $$GM=\sqrt {a_1. an}$$
    $$\Rightarrow \ GM $$ of $$7, 7^2, ..... 7^n$$
    $$=\sqrt {7.7^n}$$
    $$=7\dfrac {(n+1)}{2}$$
  • Question 3
    1 / -0
    A telephone number $$d_1d_2d_3d_4d_5d_6d_7$$ is called memorable if the prefix sequence $$d_1d_2d_3$$ is exactly the same as either of the sequence $$d_4d_5d_6$$ or $$d_5d_6d_7$$(or possibly both). If each $$d_1\epsilon\{x|0\leq x\leq 9, x\epsilon W\}$$, then number of distinct memorable telephone number is(are).
    Solution

  • Question 4
    1 / -0
    The number of ways in which $$6$$ rings can be worn on the four fingers of one hand is
    Solution
    Each ring can be worn on $$4$$ fingers, means each have $$4$$ possibilities.
    $$\therefore$$ Total ways$$=4\times4\times4\times4\times4\times4=4^{6}$$
    Hence, $$(A)$$
  • Question 5
    1 / -0
    Choose the correct answer from the alternatives given.
    A loss of $$20%$$ is incurred when $$6$$ articles are sold for a rupee. To gain $$20% $$ how many articles should be sold for a rupee?
    Solution
    : Given that, SP = $$1$$. Loss$$ % = 20%$$ We know that, $$SP = 0.8$$ $$\times$$ $$CP$$
    $$CP \, = \, \dfrac{5}{4}$$
    To gain$$ 20%$$,SP=1.2 $$\displaystyle \times \, CP \, = \, \dfrac{120}{100} \, \times \, \dfrac{5}{4} \, = \, \dfrac{3}{2} \, \Rightarrow \, = \, \dfrac{3}{2}$$
    For$$ Rs. 3/2$$ number of articles sold
    For $$Rs. 1$$ number of articles to be sold $$= 6 $$ $$\times$$ $$ \dfrac{2}{3}$$ = $$  4 $$ articles.
  • Question 6
    1 / -0
     5 2 7
     ? 3 1
     4 5 2
     -15 7 13
    Select the missing number from the given alternatives.
    Solution
    Columnwise
    First Number x Third Number - Second Number = Lowermost Number

    First Column
    $$5 \times 4 - ? = 15 \Rightarrow 20 - ? = 15$$
    $$\therefore ? = 20 - 15 = 5$$

    Second Column
    $$ 2 \times 5 - 3 = 10 - 3 = 7$$

    Third Column
    $$ 7 \times 2 - 1 = 14 - 1 = 13$$
  • Question 7
    1 / -0
    Sum of the three digit numbers (no digit being zero) having the property that all digits are perfect squares, is
    Solution
    Perfect square digits from $$1 $$ to $$9 $$ are - $$1,4,9$$

    The 3 digit nos. having the property that all digits are perfect squares are,

    $$149, 194, 491, 419, 914, 941$$

    The sum is, 

    $$149+194+491+419+914+941=3108$$
  • Question 8
    1 / -0
    If $$1^{3} + 2^{3} + .... + 10^{3} = 3025$$, then the value of $$2^{3} + 4^{3} + ..... + 20^{3}$$ is
    Solution
    Given that, $$1^{3} + 2^{3} + .... + 10^{3} = 3025$$
    Now, $$2^{3} + 4^{3} + .... + 20^{3}$$
    $$= 2^{3} (1 + 2^{3} + .... + 10^{3}) = 8\times 3025 = 24200$$.
  • Question 9
    1 / -0
    If $$9@ 3 = 12, 15 @ 4 = 22, 16 @ 14 = 4$$, then what is the value of $$6 @ 2 = ?$$
    Solution
    $$(9 - 3) \times 2 = 12, (15 - 4) \times 2$$
    $$= 22, (16 - 14) \times 2 = 4$$
    Hence, $$(6 - 2) \times 2 = 8$$.
  • Question 10
    1 / -0
    Select the missing number from the given alternatives.
    $$3$$$$4$$$$2$$$$14$$
    $$6$$$$5$$$$4$$$$44$$
    $$5$$$$2$$$$7$$?
    Solution
    $$3\times 2 + 4\times 2 = 6 + 8 = 14$$
    $$6\times 4 + 5\times 4 = 24 + 20 = 44$$
    Hence, $$5\times 7 + 2 \times 7 = 35 + 14 = 49$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now