Self Studies

Permutations and Combinations Test 36

Result Self Studies

Permutations and Combinations Test 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x)=1-x+x^2-x^3+....-x^{15}+x^{16}+x^{17}$$, then the coefficient of $$x^2$$ in $$f(x-1)$$ is?
    Solution
    $$f\left( x \right) = 1 - \left( {x - 1} \right) + {\left( {x - 1} \right)^2} - {\left( {x - 1} \right)^3} + {\left( {x - 1} \right)^4}.... - {\left( {x - 1} \right)^{15}} + {\left( {x - 1} \right)^{16}} + {\left( {x - 1} \right)^{17}}$$
    The coefficient of $${x^2}$$ by using binomial expansion
    $$^2{c_0}{x^2}{ + ^3}{c_1}{x^2}{ + ^4}{c_2}{x^2}{ + ^5}{c_3}{x^2}{ + ^6}{c_4}{x^2}{ + ^7}{c_5}{x^2}{ + ^8}{c_6}{x^2}{ + ^9}{c_7}{x^2}$$
    $${ + ^{10}}{c_8}{x^2}{ - ^{11}}{c_9}{x^2}{ + ^{12}}{c_{10}}{x^2}{ - ^{13}}{c_{11}}{x^2}{ + ^{14}}{c_{12}}{x^2}{ - ^{15}}{c_{13}}{x^2}{ + ^{16}}{c_{14}}{x^2}{ - ^{17}}{c_{15}}{x^2}$$
    $$ \Rightarrow {x^2}\left( {1 + 3 + 6 + 10 + 15 + 21 + 28 + 36 + 45 + 55 + 66 + 78 + 91 + 105 + 120 + 136} \right)$$
    = 372 + 444 = 816
  • Question 2
    1 / -0
    Replace the question mark (?) with the correct option.

    Solution

  • Question 3
    1 / -0
    Let $$5 < n_1 < n_2 < n_3 < n_4$$ be integers such that $$n_1+n_2+n_3+n_4=35$$. The number of such distinct arrangements $$(n_1, n_2, n_3, n_4)$$.
    Solution
    $${ n }_{ 1 }+{ n }_{ 2 }+{ n }_{ 3 }+.....+{ n }_{ k }=R$$
    for this arrangement,
    No. of arrangement or distinct arrangements are $${ R+K-1 }_{ { C }_{ K-1 } }$$
    So, for $${ n }_{ 1 }+{ n }_{ 2 }+{ n }_{ 3 }+{ n }_{ 4 }=35$$
    No. of arrangements $$={ 35+4-1 }_{ { C }_{ 4-1 } }={ 38 }_{ { C }_{ 3 } }$$
  • Question 4
    1 / -0
    If $$p:q:r=1:2:3\;then$$ $$\sqrt {5{p^2} + {q^2} + {r^2}} $$ is equal to: 
    Solution
    Consider the problem

    Given, $$p:q:r=1:2:3$$

    Therefore, $$\frac{p}{1} = \frac{q}{2} = \frac{r}{4} = k$$  (let)

    So, $$p = k,q = 2k,r = 4k$$

    Therefore,

    $$\begin{array}{l} \sqrt { 5{ p^{ 2 } }+{ q^{ 2 } }+{ r^{ 2 } } }  \\ =\sqrt { 5{ k^{ 2 } }+4{ k^{ 2 } }+16{ k^{ 2 } } }  \\ =\sqrt { 25{ k^{ 2 } } }  \\ 5k=5p \end{array}$$

    Hence, Option $$B$$ is the correct answer which is $$5p$$
  • Question 5
    1 / -0
    Area of the triangle formed by $$(x_{1,}y_{1}),(x_{2},y_{2}), (3y_{2},(-2y_{1}))$$
    Solution

    We have,

    $$ A\left( {{x}_{1}},{{y}_{1}} \right)=\left( {{x}_{1}},{{y}_{1}} \right) $$

    $$ B\left( {{x}_{2}},{{y}_{2}} \right)=\left( {{x}_{2}},{{y}_{2}} \right) $$

    $$ C\left( {{x}_{3}},{{y}_{3}} \right)=\left( 3{{y}_{2}},-2{{y}_{1}} \right) $$

    We know that the area of triangle is

    $$ Area\,of\,\Delta ABC=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right] $$

    $$ =\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}+2{{y}_{1}} \right)+{{x}_{2}}\left( -2{{y}_{1}}-{{y}_{1}} \right)+3{{y}_{2}}\left( {{y}_{1}}-{{y}_{2}} \right) \right] $$

    $$ =\dfrac{1}{2}\left[ {{x}_{1}}{{y}_{2}}+2{{x}_{1}}{{y}_{1}}-3{{x}_{2}}{{y}_{1}}+3{{y}_{2}}{{y}_{1}}-3{{y}_{2}}^{2} \right] $$

    Hence, the is the answer

  • Question 6
    1 / -0
    $$7$$ boys and $$8$$ girls have to sit in a row on $$15$$ chairs numbered from $$1$$ to $$15$$ then?
    Solution
    $$\begin{matrix} G-denotes\, \, Girls \\ X-denotes\, \, boys \\ \Rightarrow G\times G\times G\times G\times G\times G\times G\times G \\ \Rightarrow Number\, \, of\, \, ways\, \, of\, Girls\, \, is\, \, 8!\, \, alternate \\ \Rightarrow Number\, \, of\, \, ways\, \, of\, boys\, \, is\, \, 7! \\ \, \, \, \, \, \, \, after\, \, late \\ \Rightarrow Number\, \, of\, \, boys\, \, and\, \, girls\, \, sit\, \, alternate\, \, =8!7! \\ When\, \, first\, \, and\, \, fifteen\, \, chair\, \, are\, \, fixed\, \, and\,  \\ \, first\, \, chair\, \, \times G\times G\times G\times G\times G\times G\times G\times fifteen\, \, chair\, \, between\, \, any\, \, two\, \, boys \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \underline { 9{ C_{ 4 } }8!7! } \, \, \, Ans. \\  \end{matrix}$$
  • Question 7
    1 / -0
    A is a set containing n elements. A  subset P of A is chosen. The set A is reconstructed by replacing the element of P.A subset Q of A is again chosen. The number of way of choosing P and Q so that P Q =$$\phi $$ is :- 
    Solution
    Let A = $${a_{1},a_{2},a_{3},....a_{n}}$$. For $$a_{1}$$ $$\epsilon $$ For $$a_{1} \epsilon $$A we have following choices:
    (i) $$a_{1} \epsilon $$ P and $$a_{1} \epsilon $$ Q
    (ii) $$a_{1} \epsilon $$P $$\notin $$ 
    (iii) $$_{1}\notin P and a_{1}\epsilon Q$$
    (Iv)$$_{1}\notin P and a_{1}\notin  Q$$
    Out of these only (Ii), and (iii)  and (iv) imply $$a_{1}\notin P\cap Q $$ therefore, the number of ways in which none of $$a_{1},a_{2}.....a_{n}$$ belong $$P\cap Q$$ is $$3^{n}$$.
  • Question 8
    1 / -0
    A box contains 5 pairs of shoes. If 4 shoes are selected, then the number of ways in which exactly one pair of shoes obtained is :
    Solution

    We have,

    A box contains pair of shoes $$=5$$

    Selected pair of shoes $$=4$$

    Then,

    Exactly one pair of shoes obtained is

    $$ {{=}^{5}}{{P}_{4}} $$

    $$ =\dfrac{5!}{\left( 5-4 \right)!} $$

    $$ =\dfrac{5!}{1!}=5! $$

    $$ =5\times 4\times 3\times 2\times 1 $$

    $$ =120 $$

    Hence, this is the answer.
  • Question 9
    1 / -0
    There are locks and matching keys. If all the locks and keys are to be perfectly matched, find the maximum number of trails required to open a lock.
    Solution

  • Question 10
    1 / -0
    Find the area of the triangle formed by the mid points of sides of the triangle whose vertices are $$(2, 1)$$, $$(-2, 3)$$, $$(4, -3)$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now