Self Studies

Permutations and Combinations Test 39

Result Self Studies

Permutations and Combinations Test 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The total number of ways of arranging the letters $$AAABBBCCDEF$$ in a row such that letters $$C$$ are separated from one another is
    Solution

  • Question 2
    1 / -0
    If $$64a^2+36b^2=400, ab=4 $$ , then $$8a+6b$$ is: 
    Solution
    Given  $$64a^2+36b^2=400,\quad ab=4$$
    We know 
    $$(a+b)^2=a^2+b^2+2ab$$
    therefore,
    $$(8a+6b)^2=(8a)^2+(6b)^2+2(8a)(6a)$$
                        $$=64a^2+36b^2+96ab$$
                        $$=400+96\times4$$
                        $$=400+384$$
    $$(8a+6b)^2=784$$
    $$8a+6b=\sqrt{784}$$
    $$8a+6b=28$$
  • Question 3
    1 / -0
    There is a defined relationship between the pair of figure on either side of : :. Identify the relationship of the given pair and find be the missing figure.

    Solution

  • Question 4
    1 / -0
    The number of positive integral solutions of the equation $$x _ { 1 } x _ { 2 } x _ { 3 } x _ { 4 } x _ { 5 } = 1050$$ is
    Solution
    We have,
    $${x_1}{x_2}{x_3}{x_4}{x_5} = 1050 = 2 \times 3 \times {5^2} \times 7$$
    Now,
    $$2,3$$ and $$7$$ can be put in any boxes $${x_1},{x_2},{x_3},{x_4}$$ and $${x_5}$$.
    Also $$5,5$$ can be distributed in $$5$$ boxes in
    $$^{2 + 5 - 1}{C_{5 - 1}}{ = ^6}{C_4} = 15$$Ways.
    So total no. of positive integral solutions $$=15 \times5 \times5 \times5$$
    $$=1875$$
    Option $$D$$ is correct answer.
  • Question 5
    1 / -0
    If the area of triangle formed by the points $$(2a,b),(a+b,2b+a)$$ and $$(2b,2a)$$ be $$\lambda$$ then the area of the triangle whose vertices are $$(a+b,a-b), (3b-a,b+3a)$$ and $$(3a-b,3b-a)$$ will be
    Solution
    Area of $$ \triangle  \,= \dfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2}) \right |$$
    Given area of triangle whose vertices are $$ (2a,b), (a+b,2b+a), (2b,2a)$$ is $$ \lambda $$
    $$\therefore \lambda  = \dfrac{1}{2}\left | 2a(2b+a-2a)+(a+b)(2a-b)+2b(b-2b-a) \right |  $$
    $$ \lambda  = \dfrac{1}{2}\left | 4ab+2a^{2}-4a^{2}+2a^{2}-ab+2ab-b^{2}+2b^{2}-4b^{2}-2ab \right |$$
    $$ \lambda  = \dfrac{1}{2}\left | 3ab - 3b^{2} \right | $$ __ (1)
    Now area of triangle whose vertices are $$ (a+b,a-b), (3b-a,b+3a), (3a-b,3b-a)$$ is given by
    Area $$ = \dfrac{1}{2}\left | (a+b)(b+3a-3b+a)+(3b-a)(3b-a-a+b)+(3a-b)(a-b-b-3a) \right |$$
    $$ = \dfrac{1}{2}\left | (a+b) (-2b+4a)+(3b-a)(4b-2a)+(3a-b)(-2a-2b) \right |$$
    $$ = \dfrac{1}{2}\left | -2ab+4a^{2}-2b^{2}+4ab+12b^{2}-6ab-4ab+2a^{2}-6a^{2}-6ab+2ab+2b^{2} \right |$$
    $$ = \dfrac{1}{2}\left | 12b^{2}-12ab \right |$$
    $$ = \dfrac{4}{2}\left | -(3ab-3b^{2}) \right |$$
    $$ = 4.\dfrac{1}{2}\left | 3ab-3b^{2} \right |$$
    $$ = 4 \lambda .$$
  • Question 6
    1 / -0
    If $$(1+x+x^2)^n=\displaystyle\sum^{2n}_{r=0}a_rx^r$$, then $$a_0a_{2r}-a_1a_{2r+1}+a_2a_{2r+2}-....=?$$
  • Question 7
    1 / -0
    If repetitions are not allowed, the number of numbers consisting of $$4$$ digits and divisible by $$5$$ and formed out of $$0,1,2,3,4,5,6$$ is 
    Solution
    $$\rightarrow$$ For divisibility by $$5$$, unit's place should be $$0$$ or $$5$$
    with $$0$$, ----$$0$$
             $$6$$ choices $$\Rightarrow ^6C_3\times 3!$$
                               $$=\dfrac{6!}{3!3!}\times 3!=6.5.4$$
                                                     $$=120$$
    with $$5$$, ----$$5$$
             $$6$$ choices $$=120$$
                               $$^5C_2\times 2!=10\times 2=20$$
                                $$\Rightarrow 120+120-20=220$$
                                                      $$\rightarrow (A)$$
  • Question 8
    1 / -0
    A Printer number the pages of a book starting with $$1$$ and used $$3193$$ digit in all. How many pages does the book have:
    Solution
    No. of digits in 1-digit page no. $$\Rightarrow 1\times 9=9$$
    No. of digits in 2-digit page no. $$\Rightarrow 2\times 90= 180$$
    No. of digits in 3-digit page no. $$\Rightarrow 3\times 900= 2700$$
    No. of digits in 4-digit page no.$$ \Rightarrow  300$$
    $$\therefore $$ No. of pages with 4- digit page no. $$= (300/4)=75$$
    Hence, total no. of pages in the book $$= (999+75)= 1074$$
  • Question 9
    1 / -0
    The number of permutations of letters of the word "PARALLAL" atken four at a time must be, 
    Solution
    Permutation of word PARALLAL taken four at a time
    Four letter word might be $$LLL$$_
    So total of $$16$$ words [As $$4$$ways, $$4$$spots]
    For $$AALL$$, $$6$$ different arrangements 
    $$AA$$_ _, can be $${ 4 }_{ { C }_{ 2 } }$$ ways $$=6$$ ways
    Arranged in $$12$$ ways is total of $$72$$ words
    And extra words can be formed in $$120$$ ways
    $$16+6+144+120=286$$ ways
  • Question 10
    1 / -0
    $$\sum _{ k=1 }^{ 10 }{ k.k! } =$$
    Solution
    Given,

    $$\sum _{k=1}^{10}kk!$$

    $$a_k=kk!$$

    $$a_1=1\cdot \:1!=1$$

    $$a_2=2\cdot \:2!=4$$

    Similarly,

    $$a_3=18$$

    $$a_4=96$$

    $$a_5=600$$

    $$a_6=4320$$

    $$a_7=35280$$

    $$a_8=322560$$

    $$a_9=3265920$$

    $$a_{10}=36288000$$

    $$=1+4+18+96+600+4320+35280+322560+3265920+36288000$$

    $$=39916799$$

    $$=11!-1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now