Self Studies

Permutations and Combinations Test 45

Result Self Studies

Permutations and Combinations Test 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The coefficient of $$x^{18}$$ in the expansion of $$(1+x)(1-x)^{10}\{(1+x+x^2)^9\}$$ is?
    Solution
    Coefficient of $$x^{18}$$ in $$(1+x)(1-x)^{10}(1+x+x^2)^9$$
    $$=$$Coefficient of $$x^{18}$$ in $$(1-x)^2\{(1-x)(1+x+x^2)\}^9$$
    $$=$$Coefficient of $$x^{18}$$ in $$(1-x^2)(1-x^3)^9$$
    $$={^9C_6}=0=84$$.
  • Question 2
    1 / -0
    The area of a triangle with vertices $$A(5,0),B(8,0)$$ and $$C(8,4)$$ in square units is 
    Solution
    Area of Triangle using coordinates of A, B and C
    Area $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$--------(1)
    Here in our case $$ A(5,0) = (x_1, y_1)$$
                                 $$ A(8,0) = (x_2, y_2)$$
                                 $$ A(8,4) = (x_3, y_3)$$

    Substituting above values in Eq - 1, we get
    Area $$ = 0.5 [ 5(0-4) + 8(4-0) + 8(0-0)]$$
    Area $$ = 0.5 [ -20 + 32]$$
    Area $$ = 0.5 \times (12)=6$$
    $$ Area =  6 $$ square units.
  • Question 3
    1 / -0
    Area of the triangle with vertices $$(-2,2), (1,5)$$ and $$(6,-1)$$ is 
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    Area $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

    $$=\dfrac{1}{2} [-2(5+1) + 1(-1-2)+6(2-5)]$$

    $$=\dfrac{1}{2}[-12-3-18]$$

    $$=-\dfrac{33}{2}$$

    $$\therefore$$ Area $$=\dfrac{33}{2}~sq.\, units$$
  • Question 4
    1 / -0
    If $$\dfrac{1}{6!}+\dfrac{1}{7!}=\dfrac{x}{8!}$$, then $$x=?$$
    Solution
    $$\dfrac{1}{6!}+\dfrac{1}{7!}=\dfrac{x}{8!}\Rightarrow \dfrac{8\times 7}{8\times 7\times (6!)}+\dfrac{8}{8\times (7!)}=\dfrac{x}{8!}$$
    $$\Rightarrow \dfrac{56}{8!}+\dfrac{8}{8!}=\dfrac{x}{8!}\Rightarrow x=56+8=64$$.
  • Question 5
    1 / -0
    The vertices of a $$\triangle ABC$$ are $$A(3,8),B(-4,2)$$ and $$C(5,-1)$$. The area of $$\triangle ABC$$ is
    Solution
    Here $$\left( { x }_{ 1 }=3,{ y }_{ 1 }=8 \right) ;\left( { x }_{ 2 }=-4,{ y }_{ 2 }=2 \right) ;\left( { x }_{ 3 }=5,{ y }_{ 3 }=-1 \right) $$
    $$Ar\left( \triangle ABC \right) =\cfrac { 1 }{ 2 } \left[ { x }_{ 1 }\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 }-{ y }_{ 2 } \right)  \right] $$
    $$=\cfrac { 1 }{ 2 } \left[ 3(2+1)-4(1-8)+5(8-2) \right] =\cfrac { 1 }{ 2 } (9+36+30)=\cfrac { 75 }{ 2 } =37\cfrac { 1 }{ 2 } $$
  • Question 6
    1 / -0
    The exponent of 3 in $$100!$$ is 
    Solution

  • Question 7
    1 / -0
    If $$A$$ and $$B$$ are two points having co-ordinates $$(3,4)$$ and $$(5,-2)$$ respectively and $$P$$ is a point such that $$PA=PB$$ and area of triangle $$PAB=10$$ square units, then the co-ordinates of $$P$$ are
    Solution

  • Question 8
    1 / -0
    The next number in the pattern 62, 37, 12 ____ is
    Solution
    Option (b) is correct; here, the given series has a common difference of +25.
    $$\begin{array}{l}\Rightarrow-62+25=-37,-37+25=-12 \\\therefore-12+25=13\end{array}$$
  • Question 9
    1 / -0
    The letters of word 'ZENITH' are written in all positive ways. If all these words are written in the order of a dictionary, then the rank of the word 'ZENITH' is
    Solution
    The total number of words is $$6! = 720$$. Let us write the letters of word ZENITH alphabetically, i.e, EHINTZ.
    For ZENITH word starts withWord starting withNumber of words
    $$Z$$$$E$$$$5!$$
    $$H$$$$5!$$
    $$I$$$$5!$$

    $$N$$$$5!$$

    $$T$$$$5!$$
    ZENZEH$$3!$$

    ZEI$$3!$$
    ZENIZENH$$2$$
    ZENITZENIH$$1$$
    Total number of words before ZERNITH$$615$$
    Hence, there are $$615$$ words before ZENITH, so the rank of ZENITH is $$616$$.
  • Question 10
    1 / -0
    the area of a triangle with vertices $$ (-3, 0),(3,0) $$ and $$ (0, k) $$ is $$ 9 $$ sq units. then the value of $$ k $$ will be 
    Solution
    We know that , area of a triangle with vertices $$ (a_1,y_1),(x_2,y_2) $$ and $$ (x_3,y_3) $$ is given by 
    $$ \Delta  = \frac {1}{2} \left| \begin{matrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{matrix} \right|  $$
    $$ \therefore  \Delta = \frac {1}{2} \left| \begin{matrix} -3 & 0 & 1 \\ 3 & 0 & 1 \\ 0 & k & 1 \end{matrix} \right|  $$
    Expanding along $$ R_1 $$
    $$ 9 = \frac {1}{2} [ -3 ( -k) - 0 +1 ( 3k) ] $$
    $$ \Rightarrow 18 = 3k + 3k = 6 k $$
    $$ \therefore K = \frac {18 }{6} = 3 $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now