Self Studies
Selfstudy
Selfstudy

Permutations and Combinations Test 52

Result Self Studies

Permutations and Combinations Test 52
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If  $$A =  (-3,4) , B =(-1,-2) , C=(5,6) D= (x,-4) $$  are the vertices of a quadrilateral such that area triangle $$ABD= 2 \times$$ (area of a triangle $$ACD$$), then $$x =$$
    Solution

  • Question 2
    1 / -0
    $$\dfrac { 7 } { 11 } : \dfrac { 336 } { 110 } : ? \quad : \quad \dfrac { 720 } { 272 }$$
    Solution

  • Question 3
    1 / -0
    A line L passes through the points $$ (1,1)  $$and $$ (2,0)  $$ and another line $$  L^{\prime}  $$ passes through $$ \left(\frac{1}{2}, 0\right)  $$ and perpendicular to L.Then the area of the triangle formed by the lines $$  L, L^{\prime}  $$ and $$  y- $$ axis, is
    Solution
    $$\textbf{Hint: Product of slopes of two perpendicular lines is -1.}$$

    $$\textbf{Step 1: Find the equation of two lines.}$$

                    $$\text{Using two points form, equation of line L is given by,}$$

                    $$\Rightarrow y-0=\dfrac{0-1}{2-1}(x-2)$$

                    $$\Rightarrow y=-(x-2)$$

                    $$\Rightarrow x+y=2.......(1)$$

                    $$\text{Slope of L = - 1}$$

                    $$\text{L and }$$ $$\text{L' are perpendicular to each other}$$ 

                    $$\text{Slope of L' =}$$ $$\dfrac{-1}{-1}=1$$

                    $$\text{Using point slope form, equation of line L' is given by,}$$

                    $$\Rightarrow y-0=1(x-\dfrac{1}{2})$$

                    $$\Rightarrow 2x-2y=1 ......(2)$$

    $$\textbf{Step 2: Find the required area.}$$

                    $$\text{Let, L and L' intersect each other at B.}$$

                    $$\text{Solving eq(1) and eq(2) , we get,}$$

                    $$\Rightarrow A(x,y)=\left(\dfrac{5}{4},\dfrac{3}{4}\right)$$

                    $$\text{The intersection points of lines L and L' with y-axis are B(0,2) and C}$$$$\left(0,-\dfrac{1}{2}\right)$$ $$\text{respectively.}$$

                    $$\text{Using distance formula,}$$
                    $$AB=\sqrt{\left(0-\dfrac{5}{4}\right)^2+\left(2-\dfrac{3}{4}\right)^2}=\dfrac{5}{4}\sqrt2$$

                    $$\text{And,}$$
                    $$AC=\sqrt{\left(\dfrac{5}{4}-0\right)^2+\left(\dfrac{3}{4}+\dfrac{1}{2}\right)^2}=\dfrac{5}{4}\sqrt2$$

                    $$\text{Area of the triangle}$$ $$=\dfrac{1}{2}\times AB\times AC=\dfrac{1}{2}\times\dfrac{5}{4}\sqrt2\times\dfrac{5}{4}\sqrt2\ sq.unit $$

                                                                                          $$=\dfrac{25}{16}\ sq.unit$$

    $$\textbf{Hence, the correct option is D.}$$
  • Question 4
    1 / -0
    The area of the triangle formed by the lines $$x=0;y=0$$ and $$x\sin { { 18 }^{ 0 } } +y\cos { { 36 }^{ 0 } } +1=0$$ is 
    Solution

  • Question 5
    1 / -0
    If $$P , Q$$ are two points on the line $$3 x + 4 y + 15 = 0$$ such that $$O P = O Q = 9$$ then the area of $$\Delta O P Q$$ is
    Solution

  • Question 6
    1 / -0
    $${\log _5}2,\,\,{\log _6}\,2,\,\,{\log _{12}}\,\,2\,\,$$ are in 
    Solution

  • Question 7
    1 / -0
    Area of a triangle whose vertices are $$(a\cos \theta ,b\sin \theta ),(-a\sin \theta ,b\cos \theta)$$ and $$(-a\cos \theta ,-b\sin \theta )$$ is-
    Solution

  • Question 8
    1 / -0
    Area of the triangle formed by the tangents at the points $$\left( {4,6} \right),\left( {10,8} \right)$$ and $$\left( {2,4} \right)$$ on the parabola $${y^2} - 2x = 8y - 20,$$is (in sq. units)
    Solution

  • Question 9
    1 / -0
    The area of the triangle inscribed in the parabola $$y^2$$ = $$4x$$ , the ordinates of whose vertices are 1 , 2 and 4 is :
  • Question 10
    1 / -0
    Let A(-4, 0) & B(4,0). Then the number of points C=(x,y) on the circle $${x^2} + {y^2} = 16$$ lying in first quadrant $$(x,y \geqslant 0)$$ such that the area of the triangle whose vertices are A,B,C is a integer is 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now