Self Studies

Thermodynamics Test - 10

Result Self Studies

Thermodynamics Test - 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For the process :

       $$\\ \mathrm{H}_{2}\mathrm{O}(l)$$ ($$1$$ bar, $$373$$ $$\mathrm{K}$$) $$\rightleftharpoons \mathrm{H}_{2}\mathrm{O}(\mathrm{g})$$ ( $$1$$ bar, $$373 \mathrm{K}$$),

    the correct set of thermodynamic parameters is
    Solution
    $$\mathrm{H}_{2}\mathrm{O}(l)$$ ( 1 bar, 373 $$\mathrm{K}$$) $$\rightarrow \mathrm{H}_{2}\mathrm{O}(\mathrm{g})$$ ( 1 bar, 373 )

    As this process is in equilibrium so $$\Delta \mathrm{G}=0$$

    Also, here water changes from liquid to more random state gas so entropy of system increases.

    $$\Delta \mathrm{S}=+$$ ve
  • Question 2
    1 / -0
    A gas mixture consists of $$2$$ moles of $$O_2$$ and $$4$$ moles of Ar at temperature $$T$$. Neglecting all vibrational modes, the total internal energy of the system is 
    Solution
    Total internal energy $$\nu = \dfrac{f_{O_2}}{2} n_{O_2}RT+\dfrac{f_{Ar}}{2}n_{A_r}$$
    $$\nu = \dfrac{5}{2}\times 2RT +\dfrac{3}{2}\times 4RT$$
    $$\nu =5RT + 6RT$$
    $$\nu = 11RT$$
  • Question 3
    1 / -0
    For vaporization of water at $$ 1$$ atmospheric pressure, the values of $$\Delta$$H and $$\Delta$$S are $$40.63 kJ mol^{-1}  and $$108.8 JK$$^{-1}$$mol$$^{-1}$$, respectively. The temperature when Gibb's energy change ($$\Delta$$G) for this transformation will be zero, is : 
    Solution
    According to Gibb's equation, $$\Delta$$G = $$\Delta$$H - T$$\Delta$$S when $$\Delta$$G = 0, $$\Delta$$H = T$$\Delta$$S
    Given, $$\Delta$$H = 40.63 kJ mol$$^{-1}$$ = 40.63 x 10$$^3$$ J mol$$^{-1}$$
    $$\Delta$$S = 108.8 J K$$^{-1}$$ mol$$^{-1}$$
    $$\therefore$$ T = $$\displaystyle{\frac{\Delta H}{\Delta S} = \frac{40.63 \times 10^3}{108.8}}$$ = $$373.43 K$$
    The temperature when Gibb's energy change (G) for this transformation will be zero, is $$373.4 K$$
    The zero value of the Gibb's free energy change indicates equilibrium state.
  • Question 4
    1 / -0
    The following two reactions are known 

    $$Fe_2O_{3(s)} + 3CO_{(g)}\rightarrow 2Fe(s) + 3CO_{2(g)}$$ ; $$\Delta \ H = -26.8\ kJ$$

    $$FeO_{(s)} + CO_{(g)}\rightarrow Fe_{(s)} + CO_{2(g)}\Delta H = -16.5\ kJ$$

    The value of $$\Delta\ H$$ for the following reaction is:

    $$Fe_2O_{3(s)} + CO_{(g)}\rightarrow 2FeO_{(s)} + CO_{2(g)}$$
    Solution
    Given :
    (I) Fe$$_2$$O$$_{3(s)}$$ + 3CO$$_{(g)}$$ $$\rightarrow$$ 2Fe(s) + 3CO$$_{2(g)}$$ ; $$\Delta$$ $$H = -26.8 kJ$$

    (II) FeO$$_{(s)}$$ + CO$$_{(g)}$$ $$\rightarrow$$ Fe$$_{(s)}$$ + CO$$_{2(g)}$$ ; $$\Delta$$ $$= -16.5 kJ$$

    On multiplying equation (II) with 2, we get

    (III) 2FeO$$_{(s)}$$ + 2CO$$_{(g)}$$ $$\rightarrow$$ 2Fe$$_{(s)}$$ + 2CO$$_{2(g)}$$ ; $$\Delta$$$$ H = -33 kJ$$ 

    On substracting equation (IIII) from, I we get

    (IV) Fe$$_2$$O$$_{3(s)}$$ + CO$$_{(g)}$$ $$\rightarrow$$ 2FeO$$_{(s)}$$ + CO$$_{2(g)}$$ ; $$\Delta$$ $$H = -26.8 - (-33) kJ = + 6.2 kJ$$

    The value of $$\Delta$$H for the reaction (IV) is + $$6.2 kJ.$$
  • Question 5
    1 / -0
    For a given reaction, $$\triangle H = 35.5\ kJmol^{-1}$$ and $$\triangle S = 83.6\ JK^{-1} mol^{-1}$$. The reaction is spontaneous at: (Assume that $$\triangle H$$ and $$\triangle S$$ do not vary with temperature)
    Solution
    The reaction will be spontaneous when $$\displaystyle  \Delta G$$ = negative

    $$\displaystyle   \Delta  G =  \Delta  H - T  \Delta S$$

    $$\Delta H$$ < $$T\Delta S$$

    $$\displaystyle  T >\dfrac { \Delta H}{ \Delta S}$$

    $$\displaystyle  T = \dfrac {35.5 \: kJ/mol\times10^3\ J/kJ}{83.6 \: J/K/mol}$$

    $$\displaystyle  T  =425$$

    The reaction is spontaneous when $$\displaystyle  T > 425\ K$$
  • Question 6
    1 / -0
    Consider the following processes:
                                                      $$\Delta H\left({kJ}/{mol}\right)$$
    $$\dfrac{1}{2} A \rightarrow B$$                               $$+150$$

    $$3B \rightarrow 2C + D$$                       $$-125$$

    $$E + A \rightarrow 2D$$                          $$+350$$

    For $$B + D \rightarrow E + 2C,   \Delta H$$ will be:
    Solution
    The processes are as shown below.
                                                           $$\Delta H$$
    $$\displaystyle\frac{1}{2}A \longrightarrow B$$                              $$+150$$                 ............(1)
    $$3B \longrightarrow 2C + D$$                     $$-125$$               ...............(2)
    $$E + A \longrightarrow 2D$$                        $$+350$$                 ..................(3)
    ________________________
    $$B + D \longrightarrow E + 2C$$     .........(4)

    The reaction (1) is multiplied with 2 and added to the reaction (2). Then reaction (3) is subtracted to obtain reaction (4).

    Hence, the expression for the enthalpy change for the reaction (4) is as given below.

    $$\Delta H_{(4)} = 2\Delta H_{(1)}+\Delta H_{(2)}-\Delta H_{(3)}=300 - 125 - 350 = - 175$$

    Hence, for $$B + D \rightarrow E + 2C,   \Delta H$$ will be $$-175\ {kJ}/{mol}$$.
  • Question 7
    1 / -0
    For the reaction, $$X_2O_4(i)\rightarrow 2XO_2(g)$$, $$\Delta U=2.1k cal, \Delta s=20 cal K^{-1}$$ at 300 K. 
    Hence, $$\Delta G$$ is:
    Solution
    The relationship between the enthalpy change and the change in internal energy is as shown below.

    $$\Delta H=\Delta U+\Delta n_gRT$$

    Substitute values in th above expression.

    $$=2.1+\dfrac {2\times 2\times 300}{1000}=3.3$$

    The relationship between the change in free energy, the enthalpy change and the entropy change is as shown below.

    $$\Delta G=\Delta H-T\Delta s$$

    $$=3.3-300\times \dfrac {26}{1000}=3.3-6=-2.7 K cal$$

    Hence, the change in the free energy is -2.7 K cal.
  • Question 8
    1 / -0
    One mole of an ideal diatomic gas undergoes a transition from A to B along a path AB as shown in the figure, The change in internal energy of the gas during the transition is:

    Solution
    $$\Delta U= nC_vdT$$ whene $$n$$ is no. of moles, $$C_v$$ is heat capacity at constant volume and $$dT$$ is temperature change 
    for diatomic gas $$C_v=\dfrac{3}{2}R$$
    from ideal gas equation $$T_1=\dfrac{P_1V_1}{R}$$ and $$T_2=\dfrac{P_2V_2}{R}$$ 
    $$\Delta U= C_v(T_2-T_1)$$

    $$\Delta U= \dfrac{3}{2}R(\dfrac{P_2V_2}{R}-\dfrac{P_1V_1}{R})$$

    $$\Delta U=\dfrac{3}{2}(P_2V_2-P_1V_1)= -12\ kJ$$
    hence correct answer is option B
  • Question 9
    1 / -0
    Which law of the thermodynamics helps in calculating the absolute entropies of various substances at different temperatures?
    Solution
    The third law of thermodynamics helps to calculate the absolute entropies of pure substances at different temperatures.
    The entropy of the substance at temperature $$T$$ may be calculated by the measurement of heat capacity change

    $$\Delta S={ S }_{ T }-{ S }_{ 0 }=\int _{ 0 }^{ T }{ \cfrac { { C }_{ P }dT}{ T }  } $$

    $$\Delta S={ C }_{ p }.\ln{ T } =2.303{ C }_{ p }.\log { T } $$

    Note:
    $${S}_{T}=$$ Entropy at $$T$$ $$K$$

    $${ S }_{ 0 }=$$Entropy at $$0\ K$$
  • Question 10
    1 / -0
    Assertion (A) : Zeroth law of thermodynamics gives us the concept of energy
    Reason (R) : Internal energy is dependent on temperature
    Solution
    Zeroth law give us the definition of temperature not heat . Hence first statement is false.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now