Self Studies

Thermodynamics Test - 18

Result Self Studies

Thermodynamics Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The internal energy of a piece of lead when beaten by a hammer will
    Solution
    When beaten by a hammer the material heats up due to the impact. As the work done by this heat is zero there is a net increase in internal energy.
  • Question 2
    1 / -0
    6.80 g of $$NH_3$$; is passed over heated CuO. The standard heat enthalpies of $$NH_{3}$$, $$CuO(s)$$ and $$H_2O(l)$$ are -46.0, -155.0 and $$-285 0 \: kJ \: mol^{-1}$$ respectively and the change is.
    $$NH_3 +(3/2)CuO\longrightarrow \frac{1}{2}N_2(g)+ (3/2)H_2O(l) +(3/2)Cu(s)$$.
    If the enthalpy change is 
    Solution
    $$NH_3 + (3/2)CuO\longrightarrow \frac{1}{2}N_2(g)+ (3/2)H2O(l)+ (3/2)Cu(s) ; \:  \Delta H=?$$
                       $$\Delta H^{\circ}=\Sigma H^{\circ}_{Products}-\Sigma H^{\circ}_{Reactants}$$
                                $$\displaystyle =[\frac{1}{2}\times H^{\circ}_{N_2}+( 3 / 2)\times H^{\circ}_{H_2O(l)}+~(3 /2) H^{\circ}_{Cu}]-[(3/2)H^{\circ}_{CuO}+H^{\circ}_{NH_3}]$$
                                $$=[0+ (3/2)\times (-285)+ (3/2)\times 0]-[(3/2) \times(-155)+ (-46)]$$
                                $$=-149\,kJ$$
                         $$[\because H^{\circ} for \: pure \: element = 0 \: and \: H^{\circ}_{compound} =H^{\circ}_{formation}] $$
    $$\because 17 \: g \: NH_3 \: brings \: in \: change \: in \: \Delta H = 149 \: kJ$$
    $$\because 6.8 \: g \: NH_3 \: brings \: in \: change \: in \: \Delta H = (149 \times 6.8)/17 = 59.6 \,kJ$$
    $$\therefore  \Delta H for \: 6.89 \: g \: NH_3 = - 59.6 \: kJ$$
  • Question 3
    1 / -0
    The enthalpy change for the reaction is:
                       $$XeF_4\longrightarrow Xe^+ +  F^- + F_2 + F; \:  \ \ \ \ \Delta H=?$$

    The average $$Xe-\! \! \! -F$$ bond energy is $$34 \:kcal \:mol^{-1}$$ . $${IE}_1$$ of Xe is $$279 \: kcal \: mol^{-1}$$ and electron affinity of F is $$85 \:kcal \:mol^{-1}$$ and $$e_{F-\! \! \! -F} = 38 \:kcal \: mol^{-1}$$.
    Solution
    Bond energy $$={ BE }_{ { X }_{ e }-F }=34kCal/mol$$
    So, $${ X }_{ e }{ F }_{ 4 }=4 ({ X }_{ e }-F)$$ bonds
    $$\Rightarrow$$ total bond energy$$=4\times 34kCal/mol \Rightarrow{ BE }_{ { X }_{ e }-{ F }_{ 4 } }=136kCal/mol$$
    Now this amount of bond energy is liberated during formation of $${ X }_{ e }{ F }_{ 4 }$$   $$\Delta _{ f }{ H }_{ { X }_{ e }{ F }_{ 4 } }=-136kCal/mol$$
    $${ X }_{ e }+4F\rightarrow { X }_{ e }{ F }_{ 4 }$$   $$\Delta _{ f }{ H }_{ { X }_{ e }{ F }_{ 4 } }=-136kCal/mol$$   ...(1)
    Now $$I{ E }_{ 1 }$$ of $${ X }_{ e }=279kCal/mol$$
    So $${ X }_{ e }\rightarrow { { X }_{ { e } } }^{ + }+{ e }^{ - }$$   $$\Delta H=+I{ E }_{ 1 }$$    ...(2)
    Now, $$EA$$ of $$F=85kCal/mol$$
    $$F\rightarrow { F }^{ - }-{ e }^{ - }$$   $$\Delta H=-{ E }A$$     ...(3)
    (energy is released in this process)
    and $$2F\rightarrow{ F }_{ 2 }$$   $$\Delta K=-{ e }_{ F-F }$$   ...(4)
    Now $$(1)$$ becomes$$\Rightarrow { X }_{ e }{ F }_{ 4 }\rightarrow { X }_{ e }+4F$$   $$\Delta _{ f }{ H }_{ { X }_{ e }{ F }_{ 4 } }=136kCal/mol$$    ...(5)
    Now, $$(2)+(3)+(4)+(5)$$ gives $${ X }_{ e }{ F }_{ 4 }+{ X }_{ e }+3F\rightarrow { X }_{ e }+4F+{ X }_{ e }^{ + }+{ e }^{ - }+{ F }^{ - }-{ e }^{ - }+{ F }_{ 2 }$$
    $$\Delta H=\Delta _{ f }{ H }_{ { X }_{ e }{ F }_{ 4 } }+\left( H{ E }_{ 1 } \right) +\left( -EA \right) +\left( -{ e }_{ F-F } \right) =136+279+(-85)+(-38)=292$$
    $$\Rightarrow { X }_{ e }{ F }_{ 4 }={ X }_{ e }^{ + }+{ F }^{ - }+{ F }_{ 2 }+F$$
    $$\Delta H=292kCal/mol$$
  • Question 4
    1 / -0
    The heat capacities of the following gases at room temperature are such that :
    Solution
    Heat capacity of gases increase at room temperature by increasing the atomicity.

    Order of the heat capacity is $$NH_3 > CO_2 > O_2 = N_2 > Ar$$
                                                      4      3         2          2          1

    Hence,option C is correct.
  • Question 5
    1 / -0
    The heat required to raise the temperature of a body by 1 K is called :
    Solution
    The heat required to raise the temperature of a body by 1 K is called thermal capacity.
    In other words, when q is the heat supplied to the body and the temperature raises by 1 K, then the thermal capacity of body is q.
  • Question 6
    1 / -0
    For the change, $$C_{diamond}\longrightarrow +C_{graphite}; \:\Delta H=-1.89 \:kJ$$, if 6 g of diamond and 6 g of graphite are separately burnt to yield $$CO_2$$ the heat liberated in first case is:
    Solution
      $$C_D\longrightarrow C_G; \:               \Delta H= - 1.89$$ ...( i)
       $$C_D+ O_2\longrightarrow CO_2; \:          \Delta H= - q_1$$    ...( ii)
       $$C_G+ O_2\longrightarrow CO_2; \:          \Delta H= - q_2$$   ...( iii)
    Subtract equation (iii) from equation (ii).
    $$C_D\longrightarrow C_G; \:               \Delta H= - q_1+ q_2$$...(iv)
    From equations (i) and (iv)
    $$q_1+ q_2=-1.89$$
    or   $$q_2-q_1=-1.89 \: for \: 12 \: g \: C_{D\rightarrow G} $$
    Thus, $$for \: 6 \: g \: C_{D\rightarrow G} $$
         $$\displaystyle q_2-q_1=\frac{-1.89}{2}= -0 .945 \:kJ$$
  • Question 7
    1 / -0
    According to law of conservation of energy, the energy can neither be _______ nor _________ .
    Solution
    According to the law of conservation of energy, energy of the universe is constant i.e. it can neither be created nor be destroyed. 
    Hence, option A is correct
  • Question 8
    1 / -0
    For the reaction,
          $$C+ O_2\longrightarrow CO_2; \:      \Delta H=-393\:J$$
     $$2Zn + O_2\longrightarrow 2ZnO;\:    \Delta H=-412J\:J$$

    Which one is correct?
    Solution
    For the reaction,
          $$C+ O_2\longrightarrow CO_2; \:      \Delta H=-393\:J$$ ......(1)
     $$2Zn + O_2\longrightarrow 2ZnO;\:    \Delta H=-412J\:J$$ .......(2)
    Reverse reaction (2) and add it to reaction (1)
    $$C + 2ZnO\longrightarrow CO_2+2Zn; \:        \Delta H =+19.0$$
    Hence, Zn liberates more heat than carbon during oxidation
  • Question 9
    1 / -0
    Hess's law is related to:
    Solution
    Hess's law is related to change in heat during a reaction.
    It states that the total change in heat enthalpy during the complete course of reaction is same whether the change is brought in one step or in several steps by one method or other method.
  • Question 10
    1 / -0
    Which one of the following correctly represents the physical significance of Gibb's energy change?
    Solution
    The decrease in Gibbs energy results in useful work done by the system. 
    Therefore, $$-\Delta G={ W }_{ \text{expansion} }$$ is the correct expression.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now