Self Studies

Thermodynamics Test - 29

Result Self Studies

Thermodynamics Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$\Delta H$$ and $$\Delta S$$ for a reaction are respectively $$30kJ$$ $${mol}^{-1}$$ and $$100J{K}^{-1}$$ $${mol}^{-1}$$. Then temperature above which the reaction will become spontaneous is:
    Solution
    Gibb's free energy equation : $$\Delta G=\Delta H-T\Delta S$$
    For reaction to be spontaneous, $$\Delta G<0$$
    $$\therefore \quad \Delta H-T\Delta S<0$$
    $$\therefore \quad \left( 30\times { 10 }^{ 3 } \right) -T\times \left( 100 \right) <0$$
    $$\therefore \quad 30000<100T$$
    $$\therefore \quad 300<T$$
    $$\therefore \quad T>300K$$
    Therefore, for reaction to be spontaneous, temperature should be above 300 K.
  • Question 2
    1 / -0
    Which of the following thermodynamics relation is correct?
    Solution
    $$dG=dH-TdS-SdT$$                                      ... $$(G=H-TS)$$
    $$dH=dU+PdV+VdP$$                                    ... $$(H=U+PV)$$
    and $$dU=TdS-PdV$$
    $$\therefore$$ $$dG=(TdS-PdV)+PdV+VdP-TdS-SdT$$
    $$dG=VdP-SdT$$
  • Question 3
    1 / -0
    $$\Delta H$$ and$$\Delta S$$ for the reaction
    $${ Br }_{ 2 }(l)+{ Cl }_{ 2 }(l)\longrightarrow 2BrCl(g)$$
    are $$29.37\ kJ$$ and $$104.0\ J{ K }^{ -1 }$$ respectively. Above that temperature will this reaction become spontaneous?
    Solution
    According to Gibbs-Helmholtz equation
    $$\Delta G=\Delta H-T\Delta S$$
    For spontaneous process, $$\Delta G< 0$$
    i.e., $$T\Delta S>\Delta H$$
    $$T>\cfrac { \Delta H }{ \Delta S } $$
    $$T>\cfrac { 29.37\times 1000 }{ 104 } $$
    $$T> 282.4K$$
  • Question 4
    1 / -0
    A $$1g$$ sample of substance $$A$$ at $${100}^{o}C$$ is added to $$100mL$$ of $${H}_{2}O$$ at $${25}^{o}C$$. Using separate $$100mL$$ portion of $${H}_{2}O$$ the procedure is repeated with substance $$B$$ then with substance $$C$$. How will the final temperatures of the water compare?
    SubstanceSpecific heat
    $$A$$$$0.6{g}^{-1}$$ $$^{ o }{ { C }^{ -1 } }$$
    $$B$$$$0.4{g}^{-1}$$ $$^{ o }{ { C }^{ -1 } }$$
    $$C$$$$0.2{g}^{-1}$$ $$^{ o }{ { C }^{ -1 } }$$
    Solution
    $$\text{More the value of Specific heat more the value of final temperature.}$$
    $$T_A>T_B>T_C$$
  • Question 5
    1 / -0
    The Haber's process for production of ammonia involves the equilibrium:
    $${N}_{2}(g)+3{H}_{2}(g)\rightleftharpoons  2{NH}_{3}(g)$$
    Assuming $$\Delta {H}^{o}$$ and $$\Delta {S}^{o}$$ for the reaction do not change with temperature, which of the statements is true?
    ($$\Delta {H}^{o}=-95kJ$$ and $$\Delta {S}^{o}=-190J{ K }^{ -1 }$$)
    Solution
    $$\Delta { G }^{ o }=\Delta { H }^{ o }-T\Delta { S }^{ o }$$
    $$=-95\times 1000-500\times (-90)$$
    $$=0$$
    Thus at temperatures below 500K, $$\Delta G <0$$.
  • Question 6
    1 / -0
    For a particular reaction, $$\Delta { H }^{ o }=-38.3\ kJ$$ and $$\Delta { S }^{ o }=-113\ J{ K }^{ -1 }{ mol }^{ -1 }$$. This reaction is:
    Solution

    $${ \left( \Delta { G } \right)  }=$$$${ \left( \Delta { H } \right)  }-T$$$${ \left( \Delta { S } \right)  }$$

    for spontanious $${ \left( \Delta { G } \right)  }$$ must be negative.

    $${ \left( \Delta { H } \right)  }-T$$$${ \left( \Delta { S } \right)  }$$<0

    $${ \left( \Delta { H } \right)  }<T$$$${ \left( \Delta { S } \right)  }$$

    $${ \left( \Delta { H } \right)  }$$/$${ \left( \Delta { S } \right)  }$$<$$T$$

    $$(-38300)$$/$$(-113)$$<$$T$$

    $$339K$$<$$T$$

    $$66^oC$$<$$T$$

  • Question 7
    1 / -0
    Following enthalpy changes are given:

    $$\alpha -D\quad glucose(s)\longrightarrow \alpha -D\quad glucose(aq.);\quad \Delta H=10.72kJ$$

    $$\beta -D\quad glucose(s)\longrightarrow \beta -D\quad glucose(aq.);\quad \Delta H=4.68kJ$$

    $$\alpha -D\quad glucose(aq.)\longrightarrow \beta -D\quad glucose(aq.);\quad \Delta H=1.16kJ$$

    Calculate the enthalpy change in,

    $$\alpha -D\quad glucose(s)\longrightarrow \beta -D\quad glucose(s)$$
    Solution

  • Question 8
    1 / -0
    For which process will $$\Delta { H }^{ o }$$ and $$\Delta { G }^{ o }$$ be expected to be most similar?
    Solution

  • Question 9
    1 / -0
    Consider the values of $$\Delta { H }^{ o }$$ (in $$kJ{ mol }^{ -1 }$$) and for $$\Delta { S }^{ o }$$ (in $$J{ mol }^{ -1 }{ K }^{ -1 }$$) given for four different reactions. For which reaction will $$\Delta { G }^{ o }$$ increase the most positive) when temperature is increased from $${0}^{o}C$$ to $${25}^{o}C$$?
    Solution
    $${ \left( \Delta { G } \right)  }=$$$${ \left( \Delta { H } \right)  }-T$$$${ \left( \Delta { S } \right)  }$$
    $$\text{from the above equation we can easily clearify that more the negative value of }$$ $${ \left( \Delta { S } \right)  }$$ $$\text{increases most positive the value of }$$$${ \left( \Delta { G } \right)  }$$.
    $$\text{So option C is correct.}$$
  • Question 10
    1 / -0
    The standard Gibbs free energy $$\Delta { G }^{ o }$$ is related to equilibrium constant $${K}_{P}$$ as:
    Solution
    For a reaction, the Gibb's free energy equation is :
    $$\Delta G=\Delta { G }^{ 0 }+RTln{ K }_{ P }$$
    At equilibrium, $$\Delta G=0$$
    $$\therefore \quad { \Delta G }^{ 0 }=-RTln{ K }_{ P }$$
    $$\therefore \quad { K }_{ P }={ e }^{ -{ \Delta G }^{ 0 }/RT }$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now