$$Na^{ \oplus } (g) + Cl^{ \ominus } (g)\longrightarrow NaCl(s)$$$$ ;\,\,\,\,\,\,\Delta H = ?$$
Given:
$$Na(s) + \frac { 1 }{ 2 } Cl_2(g)\longrightarrow NaCl(s)$$$$;\,\,\,\,\,\,\,\Delta H = -98.23 kcal$$
$$Na(s)\longrightarrow Na(g)$$ $$;\,\,\,\,\,\,\,\,\Delta H = 25.98 kcal$$
$$Na(g)\longrightarrow Na^{ \oplus } (g) + e^{ - }$$ $$;\,\,\,\,\,\,\,\,\Delta H = 120.0 kcal$$
$$\frac { 1 }{ 2 } Cl_2(g)\longrightarrow Cl(g)$$$$;\,\,\,\,\,\,\,\,\Delta H = 58.02\times \frac { 1 }{ 2 } kcal$$
$$Cl^{ \ominus} (g)\longrightarrow Cl(g) + e^{ - }$$$$;\,\,\,\,\,\,\,\,\,\Delta H =87.3 kcal$$
Rewriting equations:
$$Na(s) + \frac { 1 }{ 2 } Cl_2(g)\longrightarrow NaCl(s)$$$$;\,\,\,\,\,\,\,\,\Delta H_1 = -98.23$$
$$Na(g)\longrightarrow Na(s)$$ $$;\,\,\,\,\,\,\,\,\Delta H_2 = -25.98$$
$$Na^{ \oplus } (g) + e^{ - }\longrightarrow Na(g)$$ $$;\,\,\,\,\,\,\,\,\Delta H_3 = -120.0$$
$$\frac { 1 }{ 2 } [2Cl (g)\longrightarrow Cl_2 (g) ]$$$$;\,\,\,\,\,\,\,\,\Delta H_4 = -58.02\times \frac { 1 }{ 2 }$$
$$Cl^{ \ominus} (g)\longrightarrow Cl(g) + e^{ - }$$$$;\,\,\,\,\,\,\,\,\,\Delta H_5 = 87.3$$
$$Na^{ \oplus }(g) + Cl^{ \ominus }\longrightarrow NaCl(s)$$
$$\Delta H = \Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5$$ $$\,\,\,\,\,\,\,\,\ = -98.23 - 25.98 - 120.0 - \frac{ 1 }{ 2 }\times 58.02 + 87.3$$ $$\,\,\,\,\,\,\, \ = -185.92 Kcal$$