Self Studies

Thermodynamics Test - 51

Result Self Studies

Thermodynamics Test - 51
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If  the resonance energy of $$NO_2(:O--N==O:)$$ is X kJ The measured enthalpy formation of $$NO_2(\Delta_f H^{ \ominus } )$$ is $$34  kJ  mol^{ -1 }$$. The bond energies given are:
    $$N--O \Rightarrow 222  kJ  mol^{ -1 }$$
    $$N\equiv N \Rightarrow 946  kJ  mol^{ -1 }$$
    $$O==O \Rightarrow 498  kJ  mol^{ -1 }$$
    $$N==O \Rightarrow 607  kJ  mol^{ -1 }$$
    Find out the value of X
    Solution
    Sol. $$R.E. = \Delta_f H(observed) - \Delta_f H(calculated)$$
    The balanced chemical reaction for the formation of nitrogen dioxide is as shown.
     $$\frac { 1 }{ 2 } N_2(g) + O_2(g)\longrightarrow NO_2(g)$$  $$\Delta_f H_{ cal } = \text {(BE  of  reactants - BE of  products)}$$ $$=\begin{pmatrix} \frac { 1 }{ 2 } \text {BE  of } N_2 +\text {BE  of } O_2\end{pmatrix} - \begin{pmatrix} \frac { 1 }{ 2 } \text {BE  of } N==O + \text {BE  of } N--O\end{pmatrix}$$ 
    $$=\begin{pmatrix} \frac { 1 }{ 2 }\times 946 + 498\end{pmatrix} - (607 + 222)$$  
    $$= 971-829$$   
    $$=142 kJ$$ $$\Delta H_{(observed)}$$ 
    $$= 34 kJ$$ 
    $$\therefore $$  Resonacne .Energy $$ = 34-142$$  
    $$= -108 kJ$$
    Hence, the value of $$X$$ is $$-108$$.
  • Question 2
    1 / -0
    Find the $$\Delta H$$ of the following reaction. $$OF_2(g) + H_2O(g)\longrightarrow O_2(g) + 2HF(g)$$. Average bond energies of $$O-F$$, $$O-H$$, $$O=O$$ and $$H-F$$ are $$44$$, $$111$$, $$118$$ and $$135 $$ kcal mol$$^{ -1 }$$, respectively.
    Solution
    As we know,
    $$\Delta H=$$ Bond energy data of formation of bond + Bond energy data of dissociation of bond

    So for $$OF_2 (g)+H_2O(g)⟶O_2(g)+2HF(g)$$,

    $$\Delta H_{reac} = \Delta H_{BE reactant}- \Delta H_{BEproduct}$$

    $$\Delta H = 2\times 44+2\times 111 - 118 - 2\times 135 = -78\ kcal/mol$$

    Option A is correct.
  • Question 3
    1 / -0
    The thermo-chemical equation for solid and liquid rocket fuel are given below:
    $$2Al(s) + 1\frac { 1 }{ 2 }O_2(g)\longrightarrow Al_2O_3(s), \Delta H = -1667.8 kJ$$

    $$H_2(g) +\frac { 1 }{ 2 }O_2(g)\longrightarrow H_2O(l), \Delta H = -285.9 kJ$$, 

    Then, $$\Delta H$$ for the reaction : $$Al_2O_3(s)\longrightarrow 2Al(s) + 1\frac { 1 }{ 2 }O_2(g)$$ is :
    Solution
    As given,
    $$2Al(s) + 1\frac { 1 }{ 2 }O_2(g)\longrightarrow Al_2O_3(s), \Delta H = -1667.8 kJ$$

    and by this we can see that, for reverse reaction :

    $$Al_2O_3(s)\longrightarrow 2Al(s) + 1\frac { 1 }{ 2 }O_2(g);  \Delta H = 1667.8 kJ$$
  • Question 4
    1 / -0
    Calculate the $$\Delta H^{ \ominus }$$ for the reduction of $$Fe_2O_3(s)$$ by $$Al(s)$$ at $$25^{ \circ }C$$. The enthalpies of formation of $$Fe_2O_3(s)$$ and $$Al_2O_3$$ are $$-825.5$$ and $$-1675.7  kJ  mol^{ -1 }$$ respectively.
    Solution
    The reduction of  $$Fe_2O_3$$ by Al is represented by following chemical reaction:
    $$ Fe_2O_3(s) + 2Al(s)\longrightarrow 2Fe(s) + Al_2O_3; \ \ \ \ \ \ \Delta H = ?$$ ......(1)

    The balanced chemical reaction for the formation of $$Fe_2O_3$$ is as shown below.
     $$3Fe(s) + \cfrac { 3 }{ 2 }O_2(g)\longrightarrow Fe_2O_3; \ \ \ \ \ \ \ \ \ \Delta H_1 = -825.5 kJ mol^{ -1 }$$ ......(ii)

    The balanced chemical reaction for the formation of $$Al_2O_3$$ is as shown below.
     $$2Al(s) +\cfrac { 3 }{ 2 }O_2(g)\longrightarrow Al_2O_3; \ \ \ \ \ \ \ \ \Delta H_2 = -1675.7 kJ mol^{ -1 }$$......(iii)

    Subtract the enthalpy change for the third reaction from the enthalpy change for the second reaction to obtain the enthalpy change for the first reaction.

     $$\Delta H = \Delta H_1 - \Delta H_2$$ $$= -1675.7 - (-825.5)$$  $$= - 850.2 kJ mol^{ -1 }$$

    Hence, option A is correct.
  • Question 5
    1 / -0
    How much heat is liberated when one mole of gaseous $$Na^{ \oplus }$$ combines with one mole of $$Cl^{ \ominus }$$ ion to form solid $$NaCl$$.

    Use the data given below:
    $$Na(s) + \frac { 1 }{ 2 } Cl_2(g) \longrightarrow NaCl(s)$$;       $$\Delta H = -98.23  kcal$$ 
    $$Na(s)\longrightarrow Na(g)$$;$$\,\,\,\, \Delta H = +25.98  kcal$$
    $$Na(g)\longrightarrow Na^{ \oplus } + e^ { - }$$;$$\,\,\,\,\,\,\,\Delta H = +120.0  kcal$$
    $$Cl_2(g)\longrightarrow 2Cl(g)$$;$$\,\,\,\,\,\,\,\,\Delta H = +58.02  kcal$$
    $$Cl^{ \ominus } (g)\longrightarrow Cl(g) + e^{ - }$$;$$\,\,\,\,\,\,\,\Delta H = +87.3  kcal$$
    Solution
    $$Na^{ \oplus } (g) + Cl^{ \ominus } (g)\longrightarrow NaCl(s)$$$$ ;\,\,\,\,\,\,\Delta H = ?$$

    Given:

    $$Na(s) + \frac { 1 }{ 2 } Cl_2(g)\longrightarrow NaCl(s)$$$$;\,\,\,\,\,\,\,\Delta H = -98.23 kcal$$

    $$Na(s)\longrightarrow Na(g)$$ $$;\,\,\,\,\,\,\,\,\Delta H = 25.98 kcal$$
     
    $$Na(g)\longrightarrow Na^{ \oplus } (g) + e^{ - }$$         $$;\,\,\,\,\,\,\,\,\Delta H = 120.0 kcal$$ 

    $$\frac { 1 }{ 2 } Cl_2(g)\longrightarrow Cl(g)$$$$;\,\,\,\,\,\,\,\,\Delta H = 58.02\times \frac { 1 }{ 2 } kcal$$

    $$Cl^{ \ominus} (g)\longrightarrow Cl(g) + e^{ - }$$$$;\,\,\,\,\,\,\,\,\,\Delta H =87.3 kcal$$ 

    Rewriting equations:

    $$Na(s) + \frac { 1 }{ 2 } Cl_2(g)\longrightarrow NaCl(s)$$$$;\,\,\,\,\,\,\,\,\Delta H_1 = -98.23$$

    $$Na(g)\longrightarrow Na(s)$$ $$;\,\,\,\,\,\,\,\,\Delta H_2 = -25.98$$ 

    $$Na^{ \oplus } (g) + e^{ - }\longrightarrow Na(g)$$            $$;\,\,\,\,\,\,\,\,\Delta H_3 = -120.0$$

    $$\frac { 1 }{ 2 } [2Cl (g)\longrightarrow  Cl_2 (g) ]$$$$;\,\,\,\,\,\,\,\,\Delta H_4 = -58.02\times \frac { 1 }{ 2 }$$

    $$Cl^{ \ominus} (g)\longrightarrow Cl(g) + e^{ - }$$$$;\,\,\,\,\,\,\,\,\,\Delta H_5 = 87.3$$

    $$Na^{ \oplus }(g) + Cl^{ \ominus }\longrightarrow NaCl(s)$$

    $$\Delta H = \Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5$$
    $$\,\,\,\,\,\,\,\,\ = -98.23 - 25.98 - 120.0 - \frac{ 1 }{ 2 }\times 58.02 + 87.3$$
    $$\,\,\,\,\,\,\, \ = -185.92 Kcal$$
  • Question 6
    1 / -0
    The standard enthalpy of formation of $$FeO$$ and $$Fe_2O_3$$ is $$-65 \: kcal \: mol^{-1}$$ and $$-197 \: kcal \: mol^{-1}$$ respectively. If a mixture containing $$FeO$$ and $$FeO_3$$ in $$2 : 1$$ mole ratio on oxidation is changed into $$1 : 2$$ mole ratio, thermal energy in kcal released per mole of mixture will be :
    Solution
                     $$\displaystyle Fe+\frac{1}{2}O_2\longrightarrow FeO; \:         \Delta H=-65 \: kcal \: mol^{-1}$$          . ..(i)
                   $$\displaystyle 2Fe+\frac{3}{2}O_2\longrightarrow Fe_2O_3; \:  \Delta H=-197 \: kcal \: mol^{-1}$$        ...(ii)
    By eq, $$[(ii) - 2 \times  (i)]$$
    Also,    $$\displaystyle 2FeO+\frac{1}{2}O_2\longrightarrow Fe_2O_3; \:  \Delta H=-67 \: kcal \: mol^{-1}$$          ...(iii)
    Let $$a$$ mole of FeO and $$b$$ mole of $$Fe_2O_3$$, are present such that
                   $$\displaystyle a+b=1 \: and \:\frac{a}{b}=2$$
                      $$\displaystyle a=\frac{2}{3} \:and \:b=\frac{1}{3}$$
                        $$2FeO+\frac{1}{2}O_2\longrightarrow Fe_2O_3$$
    Initial                     $$a$$                        $$b$$
    After oxidation  $$(a - 2a')$$            $$b+ a'$$
    Given,        $$\displaystyle \frac{a}{b}=2 \:and \: \frac{a - 2a'}{b+ a'}=\frac{1}{2}$$
    $$\displaystyle \therefore     \frac{a - 2a'}{\frac{a}{2}+ a'}=\frac{1}{2}$$
    $$\displaystyle \therefore       2a-4a'=\frac{a}{2}+ a'$$
    $$\displaystyle \therefore                       a'=\frac{3a}{10}=\frac{3\times 2}{10\times 3}=\frac{1}{5}$$
    $$\therefore FeO \: used = 2a' = 2/5 \: mol$$
    $$\because 2 \: mole \: FeO \: gives \: heat = 67 \: kcal$$
    $$\displaystyle \therefore \frac{2}{5} mole \: FeO \: gives \: heat =\frac{67\times 2}{2\times 5}= 13.4 \: kcal $$
  • Question 7
    1 / -0
    When $$10  g$$ of $$Al$$ is used for reduction in each of the following alumino thermic reactions, which reaction would generate more heat and by how much ?
    a.  $$2Al + Cr_2O_3\rightarrow Al_2O_3 + 2Cr$$
    b.  $$2Al + Fe_2O_3\rightarrow Al_2O_3 + 2Fe$$

    Standard heat of formation of $$Al_2O_3$$, $$Cr_2O_3$$ and $$Fe_2O_3$$ are $$-1676  kJ$$, $$-1141 kJ$$ and $$-822.2  kJ$$, respectively.
    Solution
    Given, 
    $$2Al + \dfrac{ 3 }{ 2 }O_2\rightarrow Al_2O_3;   \Delta H_1 = -1676 kJ......(i)$$

     $$2Cr + \dfrac { 3 }{ 2 }O_2\rightarrow Cr_2O_3; \Delta H_2 = -1141 kJ....(ii)$$

     $$2Fe + \dfrac { 3 }{ 2 }O_2\rightarrow Fe_2O_3; \Delta H_3 = -822.2 kJ ....(iii) $$ 

    To calculate 
     $$\Delta H_a = ? $$ 

    For $$2Al + Cr_2O_3\rightarrow Al_2O_3 + 2Cr .... (iv)$$ 

    Subtract $$\Delta H_2$$ from $$\Delta H_1$$ to obtain $$\Delta H_a$$
     $$\Delta H_a = \Delta H_1 - \Delta H_2$$ 
     $$\Delta H_a= -1676 - (-1141)$$ 
     $$\Delta H_a= -535 kJ$$ 
     
    $$\Delta H_b = ? $$ 
     
    For $$2Al + Fe_2O_3\rightarrow Al_2O_3 + 2Fe ......(v)$$ 

    Subtract $$\Delta H_3$$ from $$\Delta H_1$$ to obtain $$\Delta H_b$$
     $$\Delta H_b = \Delta H_1 - \Delta H_3$$ 
     $$\Delta H_b= -1676 - (-822.2)$$ 
     $$\Delta H_b= -853.8 kJ$$ 
     
    For reaction (iv) 
     
    $$2\times 27g$$ of $$Al$$ produces  535 kJ of heat
     
    10g of $$Al$$ produces $$ \dfrac { 535\times 10 }{ 2\times 27 } = 99.07 kJ$$ 
     
    For reaction (v)
     
    $$2\times 27g$$ of Al produces 853.8 kJ of heat

    10g of Al produces $$\dfrac{ 853.8\times 10 }{ 54 }$$
                                          $$ = 158.11 kJ$$

    Reaction (ii) produces more heat by $$ = 158.11 - 99.07$$
                                                                 $$ = 59.04 kJ$$ 
  • Question 8
    1 / -0
    If $$2Al(s) + 1\frac { 1 }{ 2 }O_2(g)\longrightarrow Al_2O_3(s), \Delta H = -166.78 kJ$$
    $$H_2(g) + \frac { 1 }{ 2 }O_2(g)\longrightarrow H_2O(l), \Delta H = -285.9 kJ$$

    Then  $$\Delta H$$ for the reaction,

    $$Al_2O_3(s)\longrightarrow 2Al(s) + 1\frac { 1 }{ 2 }O_2(g)$$ is:
    Solution
    As given,
    $$2Al(s) + 1\frac { 1 }{ 2 }O_2(g)\longrightarrow Al_2O_3(s), \Delta H = -166.78 kJ$$
    and by this we can see that,
    for reverse reaction
    $$Al_2O_3(s)\longrightarrow 2Al(s) + 1\frac { 1 }{ 2 }O_2(g)  \Delta H = 166.78 kJ$$
  • Question 9
    1 / -0
    The heat of combustion of acetylene is 312 kcal. If heat of formation of $$CO_2$$ and $$H_2O$$ are 94.38 and 68.38 kcal respectively,  $$C \equiv\!\! \equiv C$$ bond energy is $$x \:kcal $$. Given that heat of atomisation of C and H are 150.0 and 51.5 kcal respectively and $$C-\! \! \! -H$$ bond energy is 93.64 kcal. Value of $$x$$
    Solution
    Given,  
    $$C_2H_2 + (5/2)O_2\longrightarrow 2CO_2 + H_2O; \:  \Delta H = -312 \:kcal$$     ... (i)
                                             ( $$\because $$ Heat of combustion are exothermic)
                           
    $$C+ O_2\longrightarrow CO_2; \:                                        \Delta H = -94.38 \:kcal$$    ... (ii)
                          
    $$H_2+\frac{1}{2}O_2\longrightarrow H_2O;\:                               \Delta H = -68.38 \:kcal$$    ... (iii)

    Multiply eq. (ii) by 2 and add in eq. (iii)


    $$2C+ H_2+ (5/2)O_2\longrightarrow 2CO_2+ H_2O \:  ;         \Delta H = -257.14 \:kcal$$  ...( iv)

    Subtracting eq. (i) from eq. (iv) 

    $$C_2H_2 + (5/2)O_2\longrightarrow 2CO_2 + H_2O    \:    ;                            \Delta H = -312 \:kcal$$  ...( i)
    -                -                  -           -                                               +
    ........................................................................................................................
                  $$2C+ H_2\longrightarrow C_2H_2; \:                                          \Delta H = +54.86 \:kcal$$         ... (v)

    Also $$\Delta H$$ for $$C+ H_2\longrightarrow C_2H_2$$

    $$\Delta H=Bond \: energy \: data \: of \: formation \: of \: bond + Bond \: energy \: data \: of \: dissociation \: of \: bond$$
              
    $$ \Delta H= - [e _{(C \equiv\!\! \equiv C)}  + 2\times e_{(C-\!\! \! -H)}]+[2C_{s\rightarrow g}+e_{(H-\!\! \! -H)}]$$

    Also given, $$C_{s\rightarrow g}=150 \:kcal$$
                             
    $$\displaystyle \frac{1}{2}H_2(g)\longrightarrow H (g)- 51.5 \:kcal$$

    $$\therefore              e_{H-\!\! \! -H}=51.5\times 2 \:kcal= 103.0 \:kcal$$
                 
    $$e_{C-\!\! \! -H}= 93.64 \:kcal$$

    $$\therefore               54.86 = -[e _{(C \equiv\!\! \equiv C)}+2\times 93.64] +[2\times 150+1\times 103.0]$$

    $$\therefore         e _{C \equiv\!\! \equiv C}=160.86 \:kcal$$
  • Question 10
    1 / -0
    A change in the free energy of a system at constant temperature and pressure will be:

    $$\Delta_{ sys }G = \Delta_{ sys }H - T\Delta_{ sys }S$$

    At constant temperature and pressure,
    $$\Delta_{ sys }G < 0 (spontaneous)$$
    $$\Delta_{ sys }G = 0 (equilibrium)$$
    $$\Delta_{ sys }G > 0 (non-spontaneous)$$

    For a system in equilibrium, $$\Delta G = 0$$, under conditions of constant_____
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now