Self Studies

Thermodynamics Test - 52

Result Self Studies

Thermodynamics Test - 52
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\Delta_f H^{ \ominus }$$ of hypothetical $$MgCl$$ is $$-125  kJ  mol^{ -1 }$$ and for $$MgCl_2$$ is $$-642  kJ  mol^{ -1 }$$. The enthalpy of disproportionation of $$MgCl$$ is $$-49x$$. Find the value of x.
    Solution
    The reaction for formation of MgCl is as shown.
    $$Mg(s) + 1/2Cl_2(g)\longrightarrow MgCl$$......(i)           $$\Delta H_1 = -125  kJ  mol^{ -1 }$$
    The reaction for formation of $$MgCl_2$$ is as shown
    $$Mg(s) + Cl_2(g)\longrightarrow MgCl_2$$......(ii)         $$\Delta H_2 = -642  kJ  mol^{ -1 }$$
    The disproportionation reaction is as shown.
    $$2MgCl\longrightarrow Mg + MgCl_2$$ ......(iii)                              $$\Delta H = ?$$
    The reaction (i) is multiplied by 2 and subtracted from reaction (ii) to obtain reaction (iii)
    The enthalpy of disproportionation of MgCl is
    $$\Delta H = \Delta H_2 - 2\Delta H_1 = -642 - (2\times -125) = -392  kJ  mol^{ -1 }$$
    $$\therefore -49x = -392$$
    $$x  = 8$$
  • Question 2
    1 / -0
    Calculate $$\Delta_f H^{ \ominus }ICl(g)$$ from the data
    $$\Delta H_{dissociation}Cl_2(g) = 57.9  Kcal  mol^{ -1 }$$
    $$\Delta H_{dissociation}I_2(g) = 36.1  Kcal  mol^{ -1 }$$
    $$\Delta H_{dissociation}ICl(g) = 50.5  Kcal  mol^{ -1 }$$
    $$\Delta H_{dissociation}I_2(g) = 15.0  Kcal  mol^{ -1 }$$ 
    Solution
    The balanced chemical equation for the formation of $$ICl$$ is as shown.
     $$\frac { 1 }{ 2 }Cl_2(g) + \frac { 1 }{ 2 }I_2(s)\longrightarrow ICl(g) ..... \Delta_f H = ?$$
    The balanced chemical equations for the dissociation and sublimation are as shown.
      $$\begin{matrix} 1/2 \\ 1/2 \\ 1/2 \end{matrix}\begin{cases} I_{ 2 }(g)\longrightarrow 2I(g);\quad \Delta H_{ 1 }=36.1\times 1/2 \\ Cl_{ 2 }(g)\longrightarrow 2Cl(g);\Delta H_{ 2 }=57.9\times 1/2 \\ I_{ 2 }(s)\longrightarrow I_{ 2 }(g)+Cl(g);\Delta H_{ 3 }=15.0\times 1/2 \\ ICl(g)\longrightarrow I(g)+Cl(g);\Delta H_{ 4 }=50.5 \end{cases}$$

    The enthalpy change for the formation of $$ICl$$(g) is
    $$\Delta H = (\Delta H_1 + \Delta H_2 + \Delta H_3) - \Delta H_4$$
    $$= \frac { 1 }{ 2 }(36.1 + 57.9 + 15.0) - 50.5$$
    $$ = 4 Kcal mol^{ -1 }$$
  • Question 3
    1 / -0
    Using the enthalpies of formation, calculate the energy (kJ) released when $$3.00  g$$ of $$N{ H }_{ 3\left( g \right)  }$$ reacts according to the following equation?
    (Atomic weights: $$N = 14.00,  H = 1.008$$).
              $$4N{ H }_{ 3 }\left( g \right) +5{ O }_{ 2 }\left( g \right) \longrightarrow 4NO\left( g \right) +6{ H }_{ 2 }O\left( g \right) $$
    $$\Delta HN{ H }_{ 3 }\left( g \right) =-46.1   { kJ }/{ mole }$$
    $$\Delta HNO\left( g \right) =+90.2   { kJ }/{ mole }$$
    $$\Delta H{ H }_{ 2 }O\left( g \right) =-241.8   { kJ }/{ mole }$$
    Solution
    Energy released, when four mole of $$NH_{ 3 }$$ reacts, is given by $$\displaystyle \Delta_{r}H = H_{ Products } - H_{ Reactants }$$ $$\displaystyle \Delta_{r}H = (4 \times \Delta HNO\left( g \right) + 6 \times \Delta H{ H }_{ 2 }O\left( g \right)) - (4 \times \Delta HN{ H }_{ 3 }\left( g \right) + 5 \times \Delta H{ O }_{ 2 }\left( g \right))$$ 
     $$\displaystyle \Delta_{r}H = 4 \times 90.2 + 6 \times (-241.8) - 4 \times (-46.1) + 5 \times 0$$ (As $$\Delta H{ O }_{ 2 }\left( g \right) = 0$$) $$\displaystyle \Delta_{r}H = -905.6\ kJ$$ Thus, for four mole of $$NH_{ 3 }$$, i.e., $$(4\times14=) 68g$$ of $$NH_{ 3 }$$ amount of energy released is 905.6 kJ. Therefore, for 3g of $$NH_{ 3 }$$ amount of energy released will be $$\dfrac{(905.16 \times 3)}{68} = 39.9\ kJ$$
  • Question 4
    1 / -0
    a) Calculate heat of dissociation for Acetic acid from the following data:

    $$CH_3COOH + NaOH\longrightarrow CH_3COONa + H_2O .... \Delta H = -13.2  Kcal$$

    $$H^{ \oplus } + \overset { \ominus }{ O }H\longrightarrow H_2O; .... \Delta H = -13.7  Kcal$$.

    b) calculate heat of dissociation for $$NH_4OH$$ if 

    $$HCl + NH_4OH\longrightarrow NH_4Cl + H_2O; \Delta H = -12.27  Kcal$$.
    Solution
    $$\Delta H\quad =\quad \Delta { H }_{ products }-{ \Delta H }_{ reactants }$$

    There is no enthalpy during the formation of salt.

    $$CH_3COOH + NaOH\longrightarrow CH_3COONa + H_2O .... \Delta H = -13.2\  kcal$$

    $$H^{ \oplus } + \overset { \ominus }{ O }H\longrightarrow H_2O; .... \Delta H = -13.7\  Kcal$$

    $$-13.7 = -13.2 - (\Delta { H }_{ C{ H }_{ 3 }COOH })$$
     
    $$\Delta { H }_{ C{ H }_{ 3 }COOH } = 13.7- (-13.2) = -0.5$$ kCal

    Thus, the heat of dissociation for Acetic acid= -0.5 kcal

    $$HCl + NH_4OH\longrightarrow NH_4Cl + H_2O; \Delta H = -12.27\  kcal$$

    $$-12.2 = -13.2 - (\Delta { H }_{ N{ H }_{ 4 }OH })$$
     
    $$\Delta { H }_{ N{ H }_{ 4 }OH } = -13.7- (-12.27) = -1.43$$ kCal

    Thus, the heat of dissociation for NH$$_4$$OH$$ = -$$1.43 cal

    Above are enthalpies of formation. Negative of the above values give heat of dissociation.

    Hence, the correct option is $$B$$

  • Question 5
    1 / -0
    $$\Delta_f H^{ \ominus }$$ of Cyclohexene $$(l)$$ and benzene at $$25^{ \circ}C$$ is $$-156$$ and $$+46  kJ  mol^{ -1 }$$, respectively. 
    $$\Delta_{ hydrogenation }H^{ \ominus }$$ of Cyclohexene $$(l)$$ at $$25^{ \circ }C$$ is $$-119  kJ  mol^{ -1 }$$.

    Resonance energy of benzene is found to be $$-38x  kJ  mol^{ -1 }$$. Find the value of x.
    Solution
    This shows that the generation of one $$(C=C)$$ bond in Cychlohexene requires $$119  kJ  mol^{ -1 }$$ of enthalpy. TO calculate RE resonance energy.

    $$\Delta H^{ \ominus }_1 = \Delta H^{ \ominus }_2 = \Delta H^{ \ominus }_3 = 119  kJ  mol^{ -1 }, \Delta H^{ \ominus }_4 = RE$$
    $$\Delta H^{ \ominus }_5 = \Delta_f H^{ \ominus }(benzene) - \Delta_f H^{ \ominus }(cyclohexene)$$
               $$ = 46 - (-156) = 205  kJ  mol^{ -1 }$$
    $$\therefore\quad From\quad Hess`\quad law:$$
    $$\Delta H^{ \ominus }_4 = \Delta H^{ \ominus }_5 - (\Delta H^{ \ominus }_1 + \Delta H^{ \ominus }_2 + \Delta H^{ \ominus } _3)$$.
    $$ = 205 - 3\times 119 = -152  kJ  mol^{ -1 }$$
    $$\therefore -38x = -152$$
    $$x = 4$$
  • Question 6
    1 / -0
    For the reaction $$X_2O_4(l)\rightarrow 2XO_2(g)$$

    $$\Delta U = 2.1\,Kcal, \Delta S = 20\,cal\,K^{ -1 }\,at\, 300\,K$$ 

    Hence $$\Delta G$$ is:
    Solution

  • Question 7
    1 / -0
    Determine $${ \Delta H }/{ kJ }$$ for the following reaction using the listed enthalpies of reaction:
    $$4CO\left( g \right) +8{ H }_{ 2 }\left( g \right) \longrightarrow 3C{ H }_{ 4 }\left( g \right) +C{ O }_{ 2 }\left( g \right) +2{ H }_{ 2 }O\left( l \right) $$

    $$C\left( graphite \right) +{ 1 }/{ 2 }{ O }_{ 2 }\left( g \right) \longrightarrow CO\left( g \right) ;                           { \Delta H }/{ kJ }=-110.5kJ$$

    $$CO\left( g \right) +{ 1 }/{ 2 }{ O }_{ 2 }\left( g \right) \longrightarrow C{ O }_{ 2 }\left( g \right)         ;                 { \Delta H }/{ kJ }=-282.9kJ$$

    $${ H }_{ 2 }\left( g \right) +{ 1 }/{ 2 }{ O }_{ 2 }\left( g \right) \longrightarrow { H }_{ 2 }O\left( l \right)        ;                   { \Delta H }/{ kJ }=-285.8kJ$$

    $$C\left( graphite \right) +2{ H }_{ 2 }\left( g \right) \longrightarrow C{ H }_{ 4 }\left( g \right)           ;                       { \Delta H }/{ kJ }=-74.8kJ$$
    Solution
    $$4CO\left( g \right) +8{ H }_{ 2 }\left( g \right) \longrightarrow 3C{ H }_{ 4 }\left( g \right) +C{ O }_{ 2 }\left( g \right) +2{ H }_{ 2 }O\left( l \right) $$

    $$C\left( graphite \right) +{ 1 }/{ 2 }{ O }_{ 2 }\left( g \right) \longrightarrow CO\left( g \right)       ;                     { \Delta H }/{ kJ }=-110.5kJ$$ ---1

    $$CO\left( g \right) +{ 1 }/{ 2 }{ O }_{ 2 }\left( g \right) \longrightarrow C{ O }_{ 2 }\left( g \right)             ;             { \Delta H }/{ kJ }=-282.9kJ$$ ----2

    $${ H }_{ 2 }\left( g \right) +{ 1 }/{ 2 }{ O }_{ 2 }\left( g \right) \longrightarrow { H }_{ 2 }O\left( l \right)         ;                  { \Delta H }/{ kJ }=-285.8kJ$$ ----- 3

    $$C\left( graphite \right) +2{ H }_{ 2 }\left( g \right) \longrightarrow C{ H }_{ 4 }\left( g \right)                ;                  { \Delta H }/{ kJ }=-74.8kJ$$ ----- 4

    Applying Hess's law,
    $$\Delta { H }_{ r } =3\times (-\Delta H_1)+\Delta H_2+2\times \Delta H_3+3\times\Delta H_4$$

    $$\Delta { H }_{ r } = \left[ 3\left( 110.5 \right) - 282.9 + 2\left( -285.8 \right)  + 3\left( -74.8 \right)  \right] $$
             
    $$\Delta { H }_{ r } = -747.4\ kJ$$
  • Question 8
    1 / -0
    Use the given standard enthalpies of formation to determine the heat of reaction of the following reaction:
                   $$2LiOH+C{ O }_{ 2 }\left( g \right) \longrightarrow { Li }_{ 2 }C{ O }_{ 3 }\left( s \right) +{ H }_{ 2 }O\ (l)$$
    $$\Delta { H }_{ f }^{ }LiOH\left( s \right) =-487.23{ kJ }/{ mole }$$
    $$\Delta { H }_{ f }^{ }{ Li }_{ 2 }C{ O }_{ 3 }\left( s \right) =-1215.6{ kJ }/{ mole }$$
    $$\Delta { H }_{ f }^{ }{ H }_{ 2 }O\ (l) =-285.85{ kJ }/{ mole }$$
    $$\Delta { H }_{ f }^{ }C{ O }_{ 2 }\left( g \right) =-393.5{ kJ }/{ mole }$$
    Solution
    $$2LiOH+C{ O }_{ 2 }\left( g \right) \longrightarrow { Li }_{ 2 }C{ O }_{ 3 }\left( s \right) +{ H }_{ 2 }O\left( l\right) $$
    $$\Delta { H }_{ f }^{ }LiOH\left( s \right) =-487.23\;{ kJ }/{ mole }$$
    $$\Delta { H }_{ f }^{ }{ Li }_{ 2 }C{ O }_{ 3 }\left( s \right) =-1215.6\;{ kJ }/{ mole }$$
    $$\Delta { H }_{ f }^{ }{ H }_{ 2 }O\left( l \right) =-285.85\;{ kJ }/{ mole }$$
    $$\Delta { H }_{ f }^{ }C{ O }_{ 2 }\left( g \right) =-393.5\;{ kJ }/{ mole }$$
    As we know,
    Heat of reaction = Heat of formation of products - Heat of formation of reactants
     $$={(-1215.6-285.85} )-\ {((2\times-487.23) +(-393.5))} = -133.5$$ kJ/mole
  • Question 9
    1 / -0
    Determine $$\Delta H$$ of the following reaction using the listed heats of formation:
                   $$4HN{ O }_{ 3 }\left( I \right) +{ P }_{ 4 }{ O }_{ 10 }\left( s \right) \longrightarrow 2{ N }_{ 2 }{ O }_{ 5 }\left( s \right) +4HP{ O }_{ 3 }\left( s \right) $$
    $$\Delta { H }_{ f }^{ }HN{ O }_{ 3 }\left( I \right) =-174.1{ kJ }/{ mole }$$
    $$\Delta { H }_{ f }^{ }{ N }_{ 2 }{ O }_{ 5 }\left( s \right) =-43.1{ kJ }/{ mole }$$
    $$\Delta { H }_{ f }^{ }{ P }_{ 4 }{ O }_{ 10 }\left( s \right) =-2984.0{ kJ }/{ mole }$$
    $$\Delta { H }_{ f }^{ }HP{ O }_{ 3 }\left( s \right) =-948.5{ kJ }/mole$$
    Solution
    The enthalpy change for the reaction is the difference between the enthalpy of products and the enthalpy of reactants.
    $$\Delta { H }_{ r }=\left[ 2{ \left( \Delta { H }_{ f } \right)  }_{ { N }_{ 2 }{ O }_{ 5 } }+4{ \left( \Delta { H }_{ f } \right)  }_{ HP{ O }_{ 3 } }-4{ \left( \Delta { H }_{ 5 } \right)  }_{ HN{ O }_{ 3 } }-{ \left( \Delta { H }_{ f } \right)  }_{ { P }_{ 4 }{ O }_{ 10 } } \right] $$
    $$\Delta { H }_{ r }=\left[ 2\left( -43.1 \right) +4\left( -948.5 \right) -4\left( -174.1 \right) -\left( -2984.0 \right)  \right] $$
    $$=-199.8 \: kJ/mol$$
    Hence, the enthalpy change for the reaction is -199.8 kJ/mol.
  • Question 10
    1 / -0
    Calculate the value of $${ \Delta H }{\ ( kJ) }$$ for the following reaction using the listed thermochemical equations $$2C(s) + H_2(g) \rightarrow C_2H_ 2 (g)$$.

    $$2{ C }_{ 2 }{ H }_{ 2 }\left( g \right) +5{ O }_{ 2 }\left( g \right) \longrightarrow 4C{ O }_{ 2 }\left( g \right) +2{ H }_{ 2 }O\left( l \right)$$ ;     $$\Delta H^o= -2600\ kJ$$
    $$C\left( s \right) +{ O }_{ 2 }\left( g \right) \longrightarrow C{ O }_{ 2 }\left( g \right)$$ ;                                      $$\Delta H^o=-390\ kJ$$
    $$2{ H }_{ 2 }\left( g \right) +{ O }_{ 2 }\left( g \right) \longrightarrow 2{ H }_{ 2 }O\left( l \right)$$ ;                                $$\Delta H^o =-572\ kJ$$
    Solution
    $$2{ C }_{ 2 }{ H }_{ 2 }\left( g \right) +5{ O }_{ 2 }\left( g \right) \longrightarrow 4C{ O }_{ 2 }\left( g \right) +2{ H }_{ 2 }O\left( l \right)$$ ;     $$\Delta H^o_1= -2600\ kJ$$

    $$C\left( s \right) +{ O }_{ 2 }\left( g \right) \longrightarrow C{ O }_{ 2 }\left( g \right)$$ ;                                      $$\Delta H^o_2=-390\ kJ$$

    $$2{ H }_{ 2 }\left( g \right) +{ O }_{ 2 }\left( g \right) \longrightarrow 2{ H }_{ 2 }O\left( l \right)$$ ;                                $$\Delta H^o_3 =-572\ kJ$$
    Now, 

    $$\Delta { H }_{ r }=\left[ -\displaystyle\frac { 1 }{ 2 } { \left( \Delta { H }_{ 1 } \right)   }+2{ \left( \Delta { H }_{ 2 } \right)   }+\displaystyle\frac { 1 }{ 2 } { \left( \Delta { H }_{ 3} \right)   } \right] $$

    $$\Delta { H }_{ r }=-\displaystyle\frac { 1 }{ 2 } \left( -2600 \right) +2\left( -390 \right) -\displaystyle\frac { 1 }{ 2 } \times (-572)$$

    $$\Delta { H }_{ r }=234\ kJ$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now