Self Studies

Thermodynamics Test - 65

Result Self Studies

Thermodynamics Test - 65
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For the reaction, $$X_{2}O_{4}(l) \rightarrow 2XO_{2}(g)\ \triangle U = 2.1\ k\ cal, \triangle S = 20\ cal K^{-1}$$ at $$300\ K$$. Hence, $$\triangle G$$ is:
    Solution

    $${{X}_{2}{O}_{4}}_{\left( l \right)} \longrightarrow 2 {X{O}_{2}}_{\left( g \right)}$$
    The change in Gibb's free energy is given by

    $$\Delta{G} = \Delta{H} - T \Delta{S}$$
    whereas,
    $$\Delta{H} =$$ Enthalpy of reaction
    $$\Delta{S} =$$ Entropy of reaction $$= 20 \; {cal}/{K}$$

    As we know that,
    $$\Delta{H} = \Delta{U} + \Delta{{n}_{g}} RT$$
    whereas,
    $$\Delta{U} =$$ Change in internal energy $$= 2.1 \; kcal = 2100 \; cal$$

    $$\Delta{{n}_{g}} = {n}_{P} - {n}_{R} = 2 - 0 = 2$$

    $$R =$$ Gas constant $$= 2 \; cal$$
    $$T = 300 \; K$$

    $$\therefore \Delta{H} = 2100 + \left( 2 \times 2 \times 300 \right) = 3300 \; cal$$

    $$\therefore \Delta{G} = 3300 - \left( 300 \times 20 \right) = 3300 - 6000 = -2700 cal= -2.7 \; kcal$$
  • Question 2
    1 / -0
    For the reaction at $$25, X_{ 2 }O_{ 4 } { O }_{ 4_{ (l) } } \longrightarrow 2X { O }_{ 2_{ (g) } }$$.
    $$\Delta H =$$2.1 kcal and $$\Delta S =$$20 cal $${ K }^{ -1 }$$. The reaction would be:
    Solution
    By considering 2 things i.e if reaction is exothermic or endothermic we can justify if reaction is spontaneous or not. If, $$\Delta$$G is negative then reaction is said to be spontaneous. Now, $$\Delta$$G =$$\Delta$$H-$$\Delta$$S. Therefore, $$\Delta$$G will be negative, hence  it is a spontaneous reaction.
  • Question 3
    1 / -0
    Consider the following processes :-
    $$ \delta H (kJ/mol)$$
    $$\frac{1}{2} A \rightarrow B + 150$$
    $$ 3B + 2C + D - 125$$
    $$E + A \rightarrow 2D + 350$$
    For $$B + D \rightarrow E + 2C$$ $$\Delta$$$$H$$ will be:
    Solution

  • Question 4
    1 / -0
    Consider the following process
    $$\Delta H(kJ/mol)$$
    $$\frac{1}{2}A\rightarrow B +50$$
    $$3B \rightarrow 3C +D -125$$
    $$E + A \rightarrow 2D + 350$$
    For $$B + D \rightarrow E +2C, \Delta H $$will be:
    Solution
    Solution:-
    $$\cfrac{1}{2} A \longrightarrow B + 50$$
    $$2 \times \left[ \cfrac{1}{2} A \longrightarrow B + 50 \right]$$
    $$A \longrightarrow 2B + 100 ..... \left( 1 \right)$$
    $$3B \longrightarrow 2C + D - 125 ..... \left( 2 \right)$$
    $$E + A \longrightarrow 2D + 350$$
    $$2D \longrightarrow E + A - 350 ..... \left( 3 \right)$$
    Adding equation $$\left( 1 \right), \left( 2 \right) \& \left( 3 \right)$$, we have
    $$A + 3B + 2D \longrightarrow 2B + 100 + 2C + D - 125 + E + A - 350$$
    $$B + D \longrightarrow E + 2C - 375$$
    Hence the value of $$\Delta{H}$$ will be $$-375 \; {KJ}/{mol}$$.
  • Question 5
    1 / -0
    For the reaction given below the values of standard Gibbs free energy of formation at 298 K are given.
    What is the nature of the reaction?
    $$I_2 + H_2S \rightarrow 2HI + S$$
    $$\Delta G_f^0 (HI) = 1.8 \ kJ\ mol^{-1}$$, $$\Delta G_f^0 (H_2S) = 33.8 \ kJ\ mol^{-1}$$
    Solution
    $$I_2 + H_2S \rightarrow 2HI + S$$
    $$\Delta G^0 = \sum G_{f(products)}^0 - \sum G_{f(Reactants)}^0 $$ = -30.2 kJ
    Hence, the reaction is spontaneous in forward direction.
  • Question 6
    1 / -0
    $${ NH }_{ 2 }{ CN }_{ \left( s \right)  }+\dfrac { 3 }{ 2 } { O }_{ 2\left( g \right)  }\rightarrow { N }_{ 2\left( g \right)  }+{ CO }_{ 2\left( g \right)  }+{ H }_{ 2 }{ O }_{ \left( l \right)  }$$
    This reaction is carried out in a bomb calorie-meter. The heat released was $$743\ KJ\ { mol }^{ -1 }$$. The value of $${ \Delta H }_{ 300 }$$ for this reaction would be:
    Solution
    In a bomb calorimeter, heat released= $$- \Delta U$$
    $$\therefore \Delta U= -743 KJmol^{-1}$$
    $$\therefore \Delta H= \Delta U-\Delta ngRT$$
    where, $$\Delta ng$$= difference between gaseous moles of products and reactants
    $$\therefore \Delta ng=(1+1)-\cfrac {3}{2}=\cfrac {1}{2}$$
    $$\therefore \Delta H= \Delta U+\cfrac {1}{2} RT$$
    $$= -743+\cfrac {1}{2}\times 8.314 \times 300 \times 10^{-3}$$
    $$\Delta H_{300}=-741.75 KJ mol^{-1}$$
  • Question 7
    1 / -0
    For the combustion of $$CH_4$$ at 1 atm pressure & 300 K, which of the following options is correct?
    Solution
    $$\triangle H=\triangle U+\triangle { n }_{ g }RT$$
    If $$\triangle { n }_{ g }$$ is positive then $$\triangle H>\triangle U$$, If
    $$\triangle { n }_{ g }$$ is negative $$\triangle H<\triangle U$$
    Here, $$C{ H }_{ 4(g) }+2{ O }_{ 2\left( g \right)  }\rightarrow C{ O }_{ 2\left( g \right)  }+2{ H }_{ 2 }{ O }_{ \left( l \right)  }$$
    $$\Rightarrow \triangle { n }_{ g }=1-\left( 1+2 \right) =-2$$
    So, as $$\triangle { n }_{ g }=-ve\Rightarrow \triangle H<\triangle U$$
  • Question 8
    1 / -0
    For a given reaction, $$\Delta H = 35.5 kJ mol^{-1}$$ and $$\Delta S = 83.6 kJ mol^{-1}$$. The reaction is spontaneous at: (Assume that $$\Delta H $$ and $$\Delta S$$ do not vary with temperature)
    Solution
    Solution:- (A) $$T > 425 \; K$$
    The reaction is $$\begin{cases} \text{spontaneous} & \text{if } \Delta{G} < 0 \\ \text{non-spontaneous} & \text{if } \Delta{G} > 0 \end{cases}$$
    As we know that,
    $$\Delta{G} = \Delta{H} - T{\Delta{S}}$$
    $$\because$$ The reaction is spontaneous.
    $$\therefore \Delta{G} < 0$$
    $$\Delta{H} - T \Delta{S} < 0$$
    $$\Rightarrow T > \cfrac{\Delta{H}}{\Delta{S}}$$
    Given:-
    $$\Delta{H} = 35.5 \; {KJ}/{mol} = 35500 \; {J}/{mol}$$
    $$\Delta{S} = 83.6 \; {J}/{mol-K}$$
    $$\therefore T > \cfrac{35500}{83.6}$$
    $$\Rightarrow T > 425 \; K$$
    Hence the reaction will be spontaneous at $$T > 425 \; K$$.
  • Question 9
    1 / -0
    C (diamond) $$\rightarrow$$ C (graphite)
    $$\triangle S_{300K} = 10 cal K^{-1}$$
    C (diamond) + $$O_{2}$$ $$\rightarrow$$ $$CO_{2}$$
    $$\triangle$$ H = -91 cal $$mol^{-1}$$ at 300 K
    C (graphite) + $$O_{2}$$ $$\rightarrow$$ $$CO_{2}$$
    $$\triangle$$ H = X at 300 K
    X is:
    Solution

  • Question 10
    1 / -0
    Which thermochemical law is represented by the following figure?

    Solution
    According to Hess' Law of Constant Heat Summation,
    If $$ X \xrightarrow {\Delta H} Y$$,
    And $$X \xrightarrow {\Delta H_1} P \xrightarrow {\Delta H_2} Q \xrightarrow {\Delta H_3} Y$$
    then ,$$ \Delta H = \Delta H_1 + \Delta H_2 + \Delta H_3$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now