Self Studies

Measures of Central Tendency Test - 29

Result Self Studies

Measures of Central Tendency Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the median of:
    $$233,173,189,208,194,204,194,185,200$$ and $$220$$
    Solution
    Arrange the series in ascending order:
    $$173, 185, 189, 194, 194, 200, 204, 208, 220, 233$$
    The series has $$10$$ numbers, even numbers. 
    Hence, the median will be the mean of the two middle numbers
    Median $$=$$ mean of $$5^{th}$$ and $$6^{th}$$ terms
    Median $$= \dfrac{194 + 200}{2}$$
    Median $$= 197$$
  • Question 2
    1 / -0
    Find the median of:
    $$241,243,347,350,327,299,261,292,271,258$$ and $$257$$
    Solution
    Arrange the series in ascending order:
    $$241, 243, 257, 258, 261, 271, 292, 299, 327, 347, 350$$
    The series has $$11$$ terms. Hence, the median will be the middle term, i.e. $$6^{th}$$ term.
    Hence, the median is $$271$$
  • Question 3
    1 / -0
    Frequency distribution of duration of $$500$$ telephone calls received at a telephone exchange on a certain day is given below :
    Duration of call (in sec.)15 - 2930 - 4445 - 5960 - 7475 - 8990 - 104105 - 119120 - 134
    No. of calls8126115319057109
    Find mean duration of telephone call received at the telephone exchange.
    Solution
     $$ci$$$$f_i$$  $$x_i$$ $$f_ix_i$$
     14.5-29.5 8 22 176
     29.5-44.5 12 37 444
     44.5-59.5 61 52 3172
     59.5-74.5 153 67 10251
     74.5-89.5 190 82 15580
     89.5-104.5 57 97 5529
     104.5-119.5 10 112 1120
     119.5-134.5 9 127 1143
    $$N=\Sigma f_i=500$$          
     $$\Sigma f_ix_i=37415$$

    Mean $$\overline x=\dfrac {\Sigma f_ix_i}{N}$$
    $$\therefore \overline x=\dfrac{37415}{500}=74.83$$
    Hence, option $$A$$ is correct.
  • Question 4
    1 / -0
    The median of $$63,17,50,9,25,43,21,50,14$$ and $$34$$ is 29.5
    Solution
    Arranging the numbers in ascending order:
    $$9, 14, 17, 21, 25, 34, 43, 50, 50, 63$$
    The series has $$10$$ numbers, even numbers.
    Hence, the median will be the mean of the two middle numbers
    Median = mean of $$5^{th}$$ and $$6^{th}$$ terms
    Median = $$\frac{25 + 34}{2}$$
    Median = $$29.5$$
  • Question 5
    1 / -0
    Find the arithmetic mean for the following grouped frequency distribution:
    Class-intervals
    $$6-10$$
    $$10-14$$
    $$14-18$$
    $$18-22$$
     $$22-26$$
     $$26-30$$
    Frequency
     $$ 4$$
      $$ 6$$
      $$9$$
      $$ 12$$
       $$ 7 $$
       $$2$$

    Solution
    Consider the following table, to calculate mean:
    $$ci$$$$f_i$$$$x_i$$ $$f_ix_i$$
    $$6-10$$$$4$$$$ 8$$$$ 32$$
    $$ 10-14$$$$6$$$$12$$$$72$$
    $$14-18$$$$9$$$$16$$$$ 144$$
    $$18-22$$$$12$$$$ 20$$$$240$$
    $$ 22-26$$$$7$$$$ 24$$$$168$$
    $$26-30$$$$ 2$$$$28$$$$56$$
    From the table,
    $$N=\Sigma f_i=4+6+9+12+7+2=40$$          

    $$\Sigma f_ix_i=32+72+144+240+168+56=712$$

    Mean $$\overline x=\dfrac {\Sigma f_ix_i}{N}$$
    $$\therefore \overline x=\dfrac{712}{40}=17.8$$
    Hence, option $$C$$ is correct.
  • Question 6
    1 / -0
    A study related to the time(in months) taken to settle a dispute in a lower court resulted the following data.
    Time (in months)$$0 - 2$$$$2 - 4$$$$4 - 6$$$$6 - 8$$$$8 - 10$$$$10 - 12$$
    No. of persons$$15$$$$90$$$$120$$$$75$$$$70$$$$50$$
    Find the meantime taken to settle a dispute in a lower court.
    Solution
    Consider the following table to calculate mean:
    Class Interval $$f_i$$$$x_i$$ $$f_ix_i$$
    $$ 0-2$$$$ 15$$$$ 1$$$$ 15$$
    $$ 2-4$$$$ 90$$$$ 3$$$$ 270$$
    $$ 4-8$$$$ 120$$$$ 5$$$$ 600$$
    $$ 8-6$$$$ 75$$$$ 7$$$$ 525$$
    $$ 6-10$$$$ 70$$$$ 9$$$$ 630$$
    $$ 10-12$$$$ 50$$$$ 11$$$$ 550$$
     
    $$N=\sum f_i$$
         $$=420$$        
     $$\sum f_ix_i=2590$$

    $$\overline x=\dfrac {\sum f_ix_i}{N}$$
    $$\Rightarrow \overline x=\dfrac{2590}{420}$$
    $$\Rightarrow \overline x=6.16$$

    The mean time to settle a dispute in a lower court is $$6.16$$ months.
    Hence, option $$C$$ is correct.
  • Question 7
    1 / -0
    Median of a data set is a number which has an equal number of observations below and above it. The median of the data $$1, 9, 4, 3, 7, 6, 8, 8, 12, 15$$ is
    Solution
    The data given here is: $$1, 9, 4, 3, 7, 6, 8, 8, 12, 15$$
    After arranging in ascending order $$1,3,4,6,7,8,8,9,12,15$$
    Since the number of terms are even, median $$= \dfrac{4^{th} + 5^{th}}{2}$$
    $$= \dfrac{7 + 8}{2}$$
    $$= \dfrac{15}{2}$$
    $$= 7.5$$
    Hence, option $$A$$ is correct.
  • Question 8
    1 / -0
    Find the median of  63, 17, 50, 9, 25, 43, 21, 50, 14 $$ and\ 34$$
    Solution
    Arranging the numbers in ascending order:
    $$9, 14, 17, 21, 25, 34, 43, 50, 50, 63$$
    The series has $$10$$ numbers, even numbers. 
    Hence, the median will be the mean of the two middle numbers
    Median = mean of $$5^{th}$$ and $$6^{th}$$ terms
    Median = $$\dfrac{25 + 34}{2}$$
    Median = $$29.5$$
  • Question 9
    1 / -0
    The monthly salaries (in Rs.) of $$10$$ employees of a factory are: $$12000,8500,9200,7400,11300,12700,7800,11500,10320,8100$$. The median salary is:
    Solution
    Arranging the observation in ascending order :
    $$7400, 7800, 8100, 8500, 9200, 10320, 11300, 11500, 12000, 12700$$
    Total number of observations $$(n) = 10 $$
    $$\displaystyle \therefore median = \frac{1}{2} \left[\left(\frac{n}{2}\right)^{th}  observation + \left(\frac{n}{2} + 1 \right)^{th}  observation \right]$$
    $$\displaystyle = \frac{1}{2} \left[\left(\frac{10}{2}\right)^{th}  observation + \left(\frac{10}{2} + 1 \right)^{th}  observation \right]$$
    $$\displaystyle = \frac{1}{2} \left[5^{th}  observation + 6^{th}  observation \right]$$
    Median $$\displaystyle = \frac{1}{2} \left[9200 + 10320 \right] = \frac{19520}{2}$$
    $$\implies $$ Median $$= 9760$$
    $$\therefore$$ Median salary $$= Rs. 9760$$
  • Question 10
    1 / -0
    Frequency distribution of distance travelled in kms. per liter of petrol by different mopeds is given below.
    Distance travelled (in km/lit)62 - 6565 - 6868 - 7171 - 7474 - 7777 - 8080 - 83
    No.of mopeds58122835102
    Find mean distance travelled per liter of petrol by a moped.
    Solution
    Consider the following table, to calculate mean:
     $$ci$$ $$f_i$$  $$x_i$$ $$f_ix_i$$ 
     $$62-65$$ $$5$$ $$63.5$$ $$317.5$$
     $$65-68$$ $$8$$ $$66.5$$  $$532$$
     $$68-71$$ $$12$$ $$69.5$$ $$834$$
     $$71-1-74$$ $$28$$ $$72.5$$ $$2030$$
     $$74-77$$ $$35$$ $$75.5$$ $$2642.5$$
     $$77-80$$ $$10$$ $$78.5$$ $$785$$
     $$80-83$$ $$2$$ $$81.5$$ $$163$$
    $$N=\Sigma f_i=100$$          
     $$\Sigma f_ix_i=7304$$

    Mean $$\overline x=\dfrac {\Sigma f_ix_i}{N}$$
    $$\therefore \overline x=\dfrac{7304}{100}=73.04$$
    Mean distance travelled per liter of petrol by a moped is $$73.04$$ kms/lit
    Hence, option $$B$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now