Self Studies

Measures of Central Tendency Test - 32

Result Self Studies

Measures of Central Tendency Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The arithmetic mean of first ten natural numbers is
    Solution
    Formula used:
    $$\text{Arithmetic mean}= \dfrac{\text{Sum of given numbers}}{\text{Total numbers}}$$

    So, by using the above formula we get,
    $$A.M=\dfrac{1+2+3+...+10}{10}$$
               $$=\dfrac{55}{10}$$
               $$=5.5$$

    Hence, option $$A$$ is correct.
  • Question 2
    1 / -0
    In order to make the computation of the arithmetic mean of a set of $$50$$ numbers simpler each observation is subtracted from $$53$$ and the arithmetic mean of the set of differences is found to be $$-3.5$$. The arithmetic mean of the set of given numbers is
    Solution
    Mean is the sum of the values divided by the total number of values.

    Given that arithmetic mean of the $$50$$ numbers when each observation is subtracted by $$53$$ is $$-3.5$$

    Let the $$50$$ numbers be $$x_1,x_2,...,x_{50}$$

    Therefore, $$-3.5=\dfrac{(x_1-53)+(x_2-53)+...+(x_{50}-53)}{50}$$

    $$\implies {x_1+x_2+...+x_{50}-50\times53}{=-3.5\times50}$$

    $$\implies x_1+x_2+...+x_{50}=2475$$ ------(1)

    Mean of $$50$$ numbers is $$\dfrac{x_1+x_2+...+x_{50}}{50}$$

    $$\implies mean = \dfrac{x_1+x_2+...+x_{50}}{50}$$

    $$\implies mean = \dfrac{2475}{50}$$ (from (1))

    $$\implies mean =49.5$$ 
  • Question 3
    1 / -0
    Class0-1010-2020-3030-40  40-50
    Frequency5$$x$$15166
    The missing frequency marked $$\displaystyle x$$ of the above distribution whose mean is 27 is : 
    Solution

    Class         



    Frequency (f)             



    Class Mark (x)        



    fx



    0-10



    5



    5



    25



    10-20



    x



    15



    15x



    20-30



    15



    25



    375



    30-40



    16



    35



    560



    40-50



    6



    45



    270



    Total



    42 + x





     



    1230 + 15x



    Given, Mean $$ = \cfrac { \sum { fx }  }{ \sum { f}  } = 27 $$ 

    $$ => \cfrac {1230 + 15x}{42 + x} = 27 $$

    $$ => 1230 + 15x = 1134 + 27x $$ 

    $$ 96 = 12x $$ 

    $$ x = 8 $$

  • Question 4
    1 / -0
    In a class of $$19$$ students, seven boys failed in a test. Those who passed scored $$12,15,17,15,16,15,19, 19, 17, 18, 18$$ and $$19$$ marks. The median score of the $$19$$ students in the class is
    Solution
    The seven boys who failed the test scored the marks less than these given marks. Let the marks be $$\displaystyle { x }_{ 1 },{ x }_{ 2 },{ x }_{ 3 },{ x }_{ 4 },{ x }_{ 5 },{ x }_{ 6 },{ x }_{ 7 }$$
    Then the marks arranged in ascending order are 
    $$\displaystyle { x }_{ 1 },{ x }_{ 2 },{ x }_{ 3 },{ x }_{ 4 },{ x }_{ 5 },{ x }_{ 6 },{ x }_{ 7 },12,15,15,15,16,17,17,18,18,19,19,19$$
    $$\displaystyle \therefore \quad Median\quad score\quad =\left( \frac { 19+1 }{ 2 }  \right) $$th item
    $$\displaystyle =10$$th item=$$15$$.
  • Question 5
    1 / -0
    The average income of a group of persons is $$\displaystyle \bar{x}$$ and that of another group is $$\displaystyle \bar{y}.$$ If the number of persons of both group are in the ratio 4 : 3, then average income of combined group is
    Solution
    Here weight ratio is, $$w_1 :w_2 =\dfrac{ 4}{3}$$  (i)
    Hence required average
    income of the combined group is $$=\cfrac{\sum w_ix_i}{\sum

    w_i}=\cfrac{\bar{X}w_1+\bar{Y}w_2}{w_1+w_2}=\cfrac{\bar{X}\frac{w_1}{w_2}+\bar{Y}}{1+\frac{w_1}{w_2}}=\cfrac{4\bar{X}+3\bar{Y}}{7}$$

    using (i)

  • Question 6
    1 / -0
    If in a data, $$10$$ numbers arranged in increasing order. If the $$7$$th entry is increased by $$4,$$ then the median increases by
    Solution
    The median would be average of the $$5^{th}$$ and $$6^{th}$$ observations. Since they are unaffected by increase in $$7^{th}$$ entry, the median will be unchanged.
  • Question 7
    1 / -0
    Using empirical formula, calculate the mode for the following data:
    $$17$$, $$16$$, $$25$$, $$23$$, $$22$$, $$23$$, $$28$$, $$25$$, $$25$$, $$23$$
    Solution
    Given data set is $$17,16,25,23,22,23,28,25,25,23$$

    Arranging the data set in ascending order we get 
    $$16,17,22,23,23,23,25,25,25,28$$

    Total number of values is $$10$$

    Mean is $$\dfrac{16+17+22+23+23+23+25+25+25+28}{10}=\dfrac{227}{10}=22.7$$

    Median is the middle value i.e., $$\dfrac{5^{th}+6^{th}}{2}$$ value is the median.

    Therefore median is $$\dfrac{23+33}{2}=23$$

    The empirical formula is $$mode =3median-2mean$$

    $$\implies mode=3(23)-2(22.7)=69-45.4=23.6$$
  • Question 8
    1 / -0
    If the mean of following frequency distribution is $$188$$ find the missing frequencies $$\displaystyle f_{1}\: and\: f_{2}$$
    C.I.0-8080-160160-240240-320320-400Total
    Freq.2025$$\displaystyle f_{1}$$$$\displaystyle f_{2}$$10100
    Solution
    Given : Mean = 188

    C.L.$$\displaystyle f_{i}$$$$\displaystyle x_{i}$$$$\displaystyle f_{i}x_{i}$$
    0 - 80             2040             800
    80 - 160251203000
    160 - 240$$\displaystyle f_{1}$$200200 $$\displaystyle f_{1}$$
    240 - 320$$\displaystyle f_{2}$$280280 $$\displaystyle f_{2}$$
    320 - 400103603600
    Total$$\displaystyle \sum f_{i}=100=55+f_{1}+f_{2}$$$$\displaystyle \sum x_{i}f_{i}=7400+200f_{1}+2800f_{2}$$

    $$\displaystyle \overline{x}=\frac{\sum f_{i}x_{i}}{\sum f_{i}}\: \: \Rightarrow 188=\frac{7400+200f_{1}+280f_{2}}{100}$$
    $$\displaystyle 18800=7400+200f_{1}+280f_{2}\Rightarrow 18800-7400=200f_{1}+280f_{2}$$
    $$\displaystyle 11400=200f_{1}+280f_{2}\Rightarrow 1140=20f_{1}+28f_{2}$$
    $$\displaystyle 285=5f_{1}+7f_{2}............(i)$$
    Also $$\displaystyle f_{1}+f_{2}+55=100\: \: \Rightarrow f_{1}+f_{2}=100-55\: \: \Rightarrow f_{1}+f_{2}=45....................(ii)$$
    Solving equation (i) and (ii) $$\displaystyle f_{1}=15,f_{2}=30$$
  • Question 9
    1 / -0
    Consider the table given below
    Marks0-1010-2020-3030-4040-5050-60
    Number of Students12182720176
    The arithmetic mean of the marks given above is
    Solution
    $$ x_i = \cfrac{\text{upper limit + lower limit}}{2} $$

    MarksNo. of students 
    $$ \left( f_i \right) $$
    $$ x_i $$ $$ x_i f_i $$ 
    0-10 1260 
    10-20 18 15 270 
    20-30 27 25 675 
    30-40 20 35 700 
    40-50 17 45 765 
    50-60 55 330 
     $$ \Sigma{f_i} = 100 $$  $$ \Sigma{x_i f_i} = 2800 $$ 
    $$ \therefore \; Mean=\cfrac { \Sigma { x_{ i }f_{ i } } }{ \Sigma { f_{ i } } } = \cfrac{2800}{100} = 28$$
    Hence, the option $$(B)$$ is correct
  • Question 10
    1 / -0
    A distribution consists of three components with frequencies $$45, 40$$ and $$15$$ having their means $$2, 2.5, 2$$ respectively. The mean of the combined distribution is
    Solution
    Given, $$f_1 = 45$$, $$f_2 = 40$$, $$f_3 = 15$$, $$x_1 = 2$$, $$x_2 = 2.5$$ and $$x_3 = 2$$
    Now, mean $$=$$ $$\dfrac{x_1 f_1 + x_2 f_2 + x_3 f_3}{f_1 + f_2 + f_3}$$
    $$=$$ $$\dfrac{45 \times 2 + 40 \times 2.5 + 15 \times 2}{45 + 40 + 15}$$
    $$=$$ $$\dfrac{90 + 100 + 30}{100}$$
    $$=$$ $$\dfrac{220}{90} = 2.2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now