Self Studies

Measures of Central Tendency Test - 36

Result Self Studies

Measures of Central Tendency Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
     Number of dog's 2-4 4-66-8  8-10
     weight (kg) 20 1012  15
    Find the arithmetic mean of dog's weight using direct method.
    Solution
     Number of dog'sWeight (kg)
    $$(f_i)$$ 
    Midpoint
    $$(X_i)$$
    $$f_iX_i$$ 
     2-4 20 3 $$20\times 3=60$$
     4-6 10 5 $$10\times 5=50$$
     6-8 12 7 $$12\times 7=84$$
     8-10 15 9 $$15\times 9=135$$
      $$\sum f_i = 57$$  $$\sum f_ix_i = 329$$
    Arithmetic mean using direct method formula is $$\bar { x } = \dfrac { \sum { { f }_{ i }{ x }_{ i } }  }{ \sum { { f }_{ i } }  } $$
    $$\bar { x } = \dfrac { 329 }{ 57 } $$
    $$\bar { x } = 5.77$$
    The average mean weight of the dog is $$5.77   kg$$.
  • Question 2
    1 / -0
    Find the mean of the above data.

    Solution
    Answer:- Using the direct method

    Marks obtained 
    $$x_i$$
    No. of students
    $$f_i$$ 
    $$f_i x_i$$ 
     100400 
     89445 
    98 784 
    87 174 
    75  175 
    95  3285 
      $$\sum f_i = 23$$$$\sum f_i x_i = 2167$$ 
    $$Mean=\cfrac{\sum f_i x_i}{\sum f_i} $$
                 $$= \cfrac{2167}{23}$$
                 $$ = 94.21$$
                 $$ \approx 94$$
  • Question 3
    1 / -0
    Walmart supermarket recorded the length of time, to the nearest hour, that a sample of $$100$$ cars was parked in their lot. Estimate the average hour using direct method.

    Solution
    Answer:-
    Representing the data into frequency distribution table.

    Daily Pocket allowanceNo. of workers$$x_i$$$$f_i x_i$$
     5-152010200
     15-25 30 20600
     25-35 15 30 450
     35-45 12 40 480
     45-55 6 50 300
     55-65 17 60 1020


     $$\Sigma f_i=100$$ $$\Sigma f_i x_i = 3050$$
    $$\therefore \; Mean=\cfrac{\Sigma f_i x_i}{\Sigma f_i}=\cfrac{3050}{100}=30.5 \simeq 31$$
    The average hours are 31.

  • Question 4
    1 / -0
    Find the arithmetic mean of the children's height using direct method.

    Solution
    Arithmetic mean using direct method formula is $$\bar { x } = \dfrac { \sum { { f }_{ i }{ x }_{ i } }  }{ \sum { { f }_{ i } }  } $$
    $$\bar { x } = \dfrac { 1785 }{ 190 } $$
    $$\bar { x } = 9.3947$$
    The average mean height of the children is $$9.39$$ cm.

  • Question 5
    1 / -0
    A group of $$50$$ house owners contributes money towards children's education of their street. The amount of money collected is shown in the table below: (use direct method).

    Solution
    Answer:- Given $$\Sigma f=50$$
    Using frequency distribution table

    Amount No. of house owners $$x_i$$ $$x_i f_i$$ 
    0-10 25 
    10-20  10 15 150
     20-30 15 25375 
    30-40  10 35350 
    40-50  10 45450 
     $$\Sigma f_i=50$$  $$\Sigma f_i x_i = 1350$$ 
    $$\therefore$$ Amount of money collected = Arithmetic mean
    $$\Rightarrow \; Mean = \cfrac{\Sigma f_i x_i}{\Sigma f_i} = \cfrac{1350}{50}=27$$
    $$\therefore \; $$ the amount of money collected = 27Rs.
    A) Rs. 27
  • Question 6
    1 / -0
    The fruit vendor has apples packed in boxes. Each box contains different numbers of apples. The following was the distribution of apples according to the number of boxes. Find the mean number of Apples kept in a packing box using the direct method. 

    Solution
    No. of apples No. of boxes 
    $$f_i$$
    $$x_i = \cfrac{\text{Upper limit+Lower limit}}{2}$$ $$f_i x_i $$ 
    30-33 60  31.5 1890 
    33-36 120  34.54140 
    36-39 150  37.5 5625
    39-42 80  40.5 3160
    42-45 50  43.5 2175
    45-48 90  46.5 4185
     $$\Sigma f_i = 550$$   $$\Sigma f_i x_i = 21175$$
    By direct method
    $$\text{Mean} = \cfrac{\Sigma f_i x_i}{\Sigma f_i} = \cfrac{21175}{550} = 38.5$$
    $$\therefore$$ Mean $$=$$ $$38.5$$
  • Question 7
    1 / -0
    $$30$$ people gave money for donation. Find the average amount of money collected. (use  Assumed mean).

    Solution
    Money People
    (F) 
    d=X-A Fd 
    75-125 100 -50-350
    125-175  150=A 80
    175-225 200  8100 800 
    225-275 250  7150 1050 
      $$\Sigma F = 30$$  $$\Sigma Fd = 1500$$ 
    Mean (By shortcut method) = $$A+\cfrac{\Sigma Fd}{\Sigma F} = 100+\cfrac{1500}{30} = 100+50 = 150$$
    D) Mean = 150
  • Question 8
    1 / -0
     Class interval $$10-15$$ $$15-20$$ $$20-25$$ $$25-30$$
     Frequency $$7$$ $$12$$ $$8$$ $$10$$
    Find the mean of the following data using  Assumed mean method.
    Solution
    Answer:- Using Shortcut method

    Class Interval $$x $$Frequency
    $$f $$
    $$d=x-A $$$$f_d$$ 
    $$10-15 $$$$13 $$$$7$$ $$-4$$ $$-28$$ 
    $$15-20$$ $$17=A$$  $$12$$ $$0$$$$0$$ 
    $$20-25$$ $$23$$ $$8$$ $$6$$ $$48$$ 
    $$25-30$$ $$27$$  $$10$$$$10 $$$$100$$ 
      $$\Sigma f=37$$  $$\Sigma f_d = 120$$ 
    Mean = $$A + \cfrac{\Sigma f_d}{\Sigma f} = 17+\cfrac{120}{37} = 17 + 3.337 = 20.337$$
    Hence option $$(C)$$ is correct
  • Question 9
    1 / -0
    The marks obtained by $$20$$ students of Class $$X$$ of a certain school in a English paper consisting of $$100$$ marks are presented in table below. Find the mean of the marks obtained by the students using step deviation method.

    Solution
    Answer:- Using Shortcut Method
    Class interval width (i) = $$50-40 = 10$$

    Marks $$d=\cfrac{X-A}{i}$$ Fd 
    40-50 45 -2 -10 
    50-60 55  4 -1-4 
    60-70 65 = A 3 0
    70-80 75  6 1
    80-90 85  2 2
      $$\Sigma F = 20$$  $$\Sigma Fd = -4$$ 
    Mean ( By step deviation formula) = $$A+\cfrac{\Sigma Fd}{\Sigma F} \times i = 65+\left(\cfrac{-4}{20} \times 10 \right) = 65=2 = 63$$
    C) Mean = $$63$$
  • Question 10
    1 / -0
    What is the average weight of $$40$$ people whom are diagnosed for thyroid? (use  Assumed mean method).

    Solution
    WeightX = $$\cfrac{U.L.+L.L.}{2}$$Patients
    (F) 
    d=X-A Fd 
    65-7570-30 -30 
    75-85 8013 -20-260
    85-9590 12 -10 -120
    95-105 100 = 100 8 00
    105-115 110 4 1040
      $$\Sigma F = 40$$  $$\Sigma Fd = -430$$ 
    Mean by Shortcut Method = $$A+\cfrac{\Sigma Fd}{\Sigma F} = 100+\cfrac{-370}{40} = 100-9.25 = 90.75$$
    A) Mean = 90.75
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now