Self Studies

Measures of Dispersion Test - 18

Result Self Studies

Measures of Dispersion Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If mean of a series is 40 and variance 1486, then coefficient of variation is 
    Solution
    If mean of the given dist. be $$\bar{x}$$ and S.D be $$\sigma $$
    then given $$\bar{x} = 40, \sigma^2 = 1486$$
    $$\therefore$$ Coefficient of variation $$=\cfrac{\sigma}{\bar{x}}=\cfrac{\sqrt{1486}}{40}=.9637$$
  • Question 2
    1 / -0
    Mean deviation of the observations 70, 42, 63,34, 44, 54, 55, 46, 38, 48 from median is
    Solution
    Arranging the given data in ascending order-
    $$34, 38, 42, 44, 46, 48, 54, 55, 63, 70$$
    $$\because n = 10$$
    Therefore,
    Median $$\left( M \right) = \cfrac{{\left( \cfrac{n}{2} \right)}^{th} \text{ term } + {\left( \cfrac{n}{2} + 1 \right)}^{th} \text{ term}}{2}$$
    $$\Rightarrow M = \cfrac{46 + 48}{2} = 47$$
    Therefore,
    $${x}_{i}$$$$\left| {x}_{i} - M \right|$$ 
    $$34$$ 13 
    $$38$$
    $$42$$ 
    $$44$$ 
    $$46$$ 
    $$48$$ 
    $$54$$ 
    $$55$$ 
    $$63$$ 16 
    $$70$$ 23 

    $$\sum{\left| {x}_{i} - M \right|} = 86$$
    Therefore,
    Mean deviation $$= \cfrac{\sum{\left| {x}_{i} - M \right|}}{n} \\ = \cfrac{86}{10} = 8.6$$
    Hence the mean deviation of the observations is $$8.6$$.
  • Question 3
    1 / -0
    The S.D. of the following frequency distribution is 
    Class0-1010-2020-3030-40
    $$\displaystyle f_{i}$$1342
    Solution
    Class$$x_i$$$$f_i$$$$u_i=\dfrac{x_i-a}{h}$$$$f_iu_i$$$$f_iu_i^2$$
    0-1051-2-24
    10-20153-1-33
    20-30254000
    30-40352122
    $$N=10$$$$\sum f_iu_i=-3$$$$\sum f_iu_i^2=9$$
    $$\displaystyle \sigma =h\sqrt{\frac{ \Sigma f_{1}u_{1}^{2}}{N}-\left ( \frac{\Sigma f_{1}u_{1}}{N} \right )^{2}}$$

    $$\displaystyle =10\sqrt{\frac{9}{10}-\left ( \frac{-3}{10} \right )^{2}}=9$$
  • Question 4
    1 / -0
    The sum of the squares of deviation of 10 observations from their mean 50 is 250, then coefficient of varition is
    Solution
    Given $$\displaystyle \Sigma \left ( x_{i}-\overline{x} \right )^{2}=250$$,$$n=10,\overline{x}=50$$

    Now, $$\sigma=\sqrt{\dfrac{1}{n}\Sigma \left ( x_{i}-\overline{x} \right )^{2}}$$

    $$= \sqrt{\dfrac{1}{10}\times 250}=5$$ 
    Hence coefficient of variation $$\displaystyle =\dfrac{\sigma }{\overline{x}}\times 100=\dfrac{5}{50}\times 100=10$$%
  • Question 5
    1 / -0
    If the coefficient of variation and standard deviation of a distribution are 50% and 20 respectively, the its mean is
    Solution
    We know if a distribution having mean $$\bar{x}$$ and standard deviation $$\sigma$$
    then coefficient of variation $$=\cfrac{\sigma}{\bar{x}}\times 100$$
    $$\therefore \cfrac{20}{\bar{x}}\times 100=50\Rightarrow \bar{x} = 40$$
    Hence required mean is $$=40$$

  • Question 6
    1 / -0
    The coefficient of range of the following distribution $$10, 14, 11, 9, 8, 12, 6$$
    Solution
    Here greatest term in the given observation is, $$x_m =14$$
    and least term is, $$x_l = 6$$
    Hence coefficient of range is $$=\cfrac{x_m-x_l}{x_m+x_l}=\cfrac{8}{20}=0.4$$
  • Question 7
    1 / -0
    The coefficient of mean deviation from median of observations  $$40, 62, 54, 90, 68, 76$$  is
    Solution
    Arrange the given observations in ascending order
    $$40,54,62,68,76,90$$
    Here, number of terms $$n=6 (even) $$
    $$\displaystyle \therefore $$ Median (M) $$\displaystyle =\frac{\left ( \frac{n}{2} \right )th\:term+\left ( \frac{n}{2}+1 \right )th\:term}{2}=\frac{62+68}{2}=65$$

    $$\Sigma \left | x_{i}-M \right |=25+11+3+3+11+25=78$$
    Mean deviation from median $$\displaystyle =\frac{\Sigma \left | x_{i}-M \right |}{n}=\frac{78}{6}=13 $$
    $$\therefore $$ Coefficient of M.D.=$$\displaystyle =\frac{M.D.}{median}=\frac{13}{65}=0.2$$
  • Question 8
    1 / -0
    The S.D. of the following freq. dist.
    Class 0-1010-2020-3030-40
    $$f_i$$1342
    Solution
    Class     $$x_i$$   $$f_i$$   $$u_i=\dfrac{x_i-A}{h}$$  $$u_i^2$$        $$f_iu_i$$     $$f_iu_i^2$$
    0-1051-24-24
    10-20153-11-33
    20-302540000
    30-403521122
    Total10-39
    $$S.D.$$$$=h\sqrt { \cfrac { \sum { { f }_{ i }{ u }_{ i }^{ 2 } }  }{ \sum { { f }_{ i } }  } -{ \left( \cfrac { \sum { f } _{ i }{ u }_{ i } }{ \sum { { f }_{ i } }  }  \right)  }^{ 2 } } $$
    $$S.D.=10\sqrt { \cfrac { 9 }{ 10 } -{ \left( \cfrac { -3 }{ 10 }  \right)  }^{ 2 } } =9$$
  • Question 9
    1 / -0
    The mean of a dist. is $$4$$. if its coefficient of variation is $$58\%$$. Then the S.D. of the dist. is
    Solution
    We know if a distribution having mean $$\bar{x}$$ and standard deviation $$\sigma$$
    then coefficient of variation $$=\cfrac{\sigma}{\bar{x}}\times 100$$
    $$\therefore \cfrac{\sigma}{4}\times 100=58\Rightarrow \sigma = \cfrac{58}{25}=2.32$$
    Hence required standard deviation is $$=2.32$$
  • Question 10
    1 / -0
    The mean deviation from mean of observations 5, 10, 15, 20, ......85 is
    Solution
    Given series is $$5,10,15,....,85$$, which is an AP.
    Last term $$85=a+(n-1)d$$
    $$\Rightarrow n=17$$
    Sum of $$n$$ terms of AP $$=\dfrac{17}{2}(5+85)$$
    $$\sum x_i=765$$

    $$\bar x=\dfrac{\sum x_i}{n}$$

    $$\bar x=\dfrac{765}{17}=45$$

    So, deviations from mean are $$40,35,25,20,15,10,5,0,5,10,15,20,25,30,35,40$$
    Sum of deviations $$=360$$

    Mean deviation from mean $$=\dfrac{360}{17}=21.17$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now