Self Studies

Measures of Dispersion Test - 19

Result Self Studies

Measures of Dispersion Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Mean deviations of the series $$a,a+d,a+2d,...,a+2nd$$ from its mean is 
    Solution
    Clearly given observation is in A.P, and have $$2n+1$$ terms.
    $$\therefore$$ Mean $$\displaystyle =\frac{1}{2}\left \{ a+{a+2nd}\right \}=a+nd$$ 
    Use for $$x = a$$, $$|x-\bar{x}| =|a+nd-a|=nd$$ 
    $$x = a+d$$, $$|x-\bar{x}| =|a+nd-a-d|=(n-1)d$$ 
    Similarly, write till $$x=a+2nd$$, to get sum of $$\sum \left | x-\bar{x} \right |$$
    And thus mean deviation about mean $$\displaystyle =\frac{1}{2n+1}\sum \left | x-\bar{x} \right |$$ $$\displaystyle =\frac{2}{2n+1}.d\left ( 1+2+3\cdots +n \right )$$ $$\displaystyle =\frac{n\left ( n+1 \right )d}{(2n+1)}$$
  • Question 2
    1 / -0
    The mean of a distribution is 4. If its coefficient of variation is 58%. Then the S.D. of the distribution is
    Solution
    Given,  mean $$\bar{x} = 4,$$ and coefficient of variation $$=58$$ %
    If S.D of the given distribution is $$\sigma$$ then we know that,
    Coefficient of variation $$=\cfrac{\sigma}{\bar{x}}\times 100$$ %
    $$\Rightarrow 58 = \cfrac{\sigma}{4}\times 100\Rightarrow \sigma = \cfrac{58\times 4}{100}=2.32$$
  • Question 3
    1 / -0
    Standard deviation of the distribution $$1, 3, 5,....., 13$$ will be
    Solution
    Mean of the given numbers is $$\bar x =\dfrac{1+3+5+7+9+11+13}{7}=\dfrac{49}{7}=7$$

    total number of values $$n=7$$

    Standard deviation is given by $$SD=\sqrt{\dfrac{\sum_{i=1}^n (x_i-\bar x)^2}{n-1}}$$

    $$\implies SD=\sqrt{\dfrac{(1-7)^2+(3-7)^2+(5-7)^2+(7-7)^2+(9-7)^2+(11-7)^2+(13-7)^2}{7-1}}$$

    $$\implies SD=\sqrt{\dfrac{36+16+4+0+4+16+36}{6}}$$

    $$\implies SD=\sqrt{\dfrac{112}{6}}$$

    $$\implies SD=\sqrt{18.6667}=4.32$$

    Therefore the standard deviation for the given values is $$4.32$$
  • Question 4
    1 / -0
    The coefficient of mean deviation from median of observations 40, 62, 54, 90, 68, 76 is
    Solution
    Arranging the given data in ascending order
    40,54,62,68,76,90
    Here, $$n=6 (even)$$
    $$M= \dfrac{\text{value of }3^{rd}\text{observation}+\text{value of }4^{th}\text{observation}}{2}$$
    Median $$M=\dfrac{62+68}{2}=65$$

    Mean deviation about median $$M.D=\dfrac{|40-65|+|54-65|+|62-65|+|68-65|+|76-65|+|90-65|}{65}$$

    $$=\dfrac{25+11+3+3+11+25}{65}=1.2$$
  • Question 5
    1 / -0
    For the given data, SD = 10, AM = 20, the coefficient
    of variation is____
    Solution
    Coeffecient of variation $$ = \frac {SD}{AM} \times 100 = \frac {10}{20} \times 100 = 50 $$
  • Question 6
    1 / -0
    For the given data, SD $$= 10$$, AM $$= 20$$ the coefficient of variation is ...........
    Solution
    Coefficient of variation is the ratio of standard deviation to the mean.

    Given that $$SD=10$$ and $$AM=20$$

    Therefore of coefficient of variation is $$\dfrac{SD}{AM}\times100=\dfrac{10}{20}\times100=50\%$$
  • Question 7
    1 / -0
    The sum of the squares of deviation of 10 observations from their mean 50 is 250, then coefficient of variation is
    Solution
    Given,   $$\sum (x-\bar{x})^2 = 250, n = 10, \bar{x} =50$$
    Thus standard deviation $$ = \sqrt{\cfrac{\sum (x-\bar{x})^2}{n}}=\sqrt{25}=5$$
    $$\therefore$$ Coefficient of variation $$=\cfrac{\sigma}{\bar{x}}\times 100 =\cfrac{5}{50}\times 100$$ % $$= 10$$%

  • Question 8
    1 / -0
    Consider the following groups A and B
    A : 3, 4, 5,...... upto n terms
    B : 15, 19, 23,..... upto n terms
    If the mean deviations of groups A and B about their means are $$\displaystyle \alpha \: \: \: and\: \: \: \beta  $$ respectively then
    Solution
    $$A$$           $$B$$
    $$3$$            $$15$$
    $$4$$            $$19$$
    $$5$$            $$23$$
    $$.$$              $$.$$
    $$.$$               $$.$$
    $$.$$             $$.$$
    $$n$$            $$n$$

    $$\dfrac{\sum A}{n}=\alpha$$

    $$\dfrac{\sum B}{n}=\beta$$
    now for $$A$$
    $$a=3$$
    $$d=1$$
    $$\sum A=\dfrac{n}{2}[2a+(n-1)d]$$

                    =$$\dfrac{n}{2}[6+(n-1)])$$

                    =$$\dfrac{n}{2}[5+n]$$

    $$\alpha=\dfrac{\sum A}{n}=\dfrac{5+n}{2}$$

    =>n=$$2\alpha-5$$
    for $$B$$
    $$a=15$$
    $$d=4$$
    $$\sum B=\dfrac{n}{2}[2a+(n-1)d]$$
                    =$$\dfrac{n}{2}[30+(n-1)4]$$
                    =$$\dfrac{n}{2}[26+4n]$$
    $$\beta=\dfrac{\sum B}{n}=\dfrac{26+4n}{2}$$
    $$\beta=\dfrac{26+4(2\alpha-5)}{2}$$
    $$2\beta=6+8\alpha$$
    $$\beta=4\alpha+3$$


  • Question 9
    1 / -0
    Find the mean for the following data using step deviation method.

    Solution
    Answer:- By shortcut Method
    Class interval width (w) = 2

    $$X_i$$  $$F_i$$$$d=\cfrac{X-A}{i}$$ $$F_i d_i$$ 
     10-1 -10
    4=A 200
    6 30130
    8 40280
      $$\Sigma f = 100$$  $$\Sigma fd = 100$$ 
    Mean = $$A+\cfrac{\Sigma fd}{\Sigma f} \times w=4+\cfrac{100}{100} \times 2 ={4+2}=6$$
    C)6
  • Question 10
    1 / -0
    Find the mean for the following data using step deviation method.

    Solution
    Answer:- By shortcut Method
    Class interval width (w) = 3

     F$$d=\cfrac{X-A}{i}$$ Fd 
    3 5-1 -5
    6=A 10-0-0
    9 15115
    12 20240
      $$\Sigma f = 50$$  $$\Sigma fd = 50$$ 
    Mean = $$A+\cfrac{\Sigma fd}{\Sigma f} \times i=6+\left(\cfrac{50}{50} \times 3\right) = 6+3 = 9$$
    A) 9
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now