for $$A = C, A - C = \phi$$
$$\Rightarrow \phi \subseteq B$$
But $$A\not {\subseteq} B$$
$$\Rightarrow$$ option $$1$$ is NOT true
Let $$x \epsilon (C x \epsilon (C \cup A)\cap (C\cup B)$$
$$\Rightarrow x\epsilon (C\cup A)$$ and $$x \epsilon (C\cup B)$$
$$\Rightarrow (x \epsilon C$$ or $$x \epsilon A)$$ and $$(x\epsilon C$$ or $$x \epsilon B)$$
$$\Rightarrow x \epsilon C$$ or $$x \epsilon (A\cap B)$$
$$\Rightarrow x \epsilon C$$ or $$x\epsilon C$$ (as $$A\cup B\subseteq C)$$
$$\Rightarrow x \epsilon C$$
$$\Rightarrow (C \cup A)\cap (C\cup B)\subseteq ....(1)$$
Now $$x \epsilon C\Rightarrow x \epsilon (C\cup A)$$ and $$x \epsilon (C \cup B)$$
$$\Rightarrow x\epsilon (C\cup A)\cap (C\cup B)$$
$$\Rightarrow C\subseteq (C\cup A)\cap (C \cup B) .....(2)$$
$$\Rightarrow$$ from (1) and (2)
$$C = (C\cup A)\cap (C\cup B)$$
$$\Rightarrow$$ option 2 is true
Let $$x \epsilon A$$ and $$x \not {\epsilon} B$$
$$\Rightarrow x \epsilon (A - B)$$
$$\Rightarrow x \epsilon C$$ (as $$A - B \subseteq C)$$
Let $$x \epsilon A$$ and $$x \epsilon B$$
$$\Rightarrow x \epsilon (A\cap B)$$
$$\Rightarrow x \epsilon C$$ (as $$A\cap B\subseteq C)$$
Hence $$x \epsilon A \Rightarrow x \epsilon C$$
$$\Rightarrow A \subseteq C$$
$$\Rightarrow$$ Option 3 is true
as $$C\supseteq (A\cap B)$$
$$\Rightarrow B\cap C\supseteq (A\cap B)$$
as $$A\cap B\neq \phi$$
$$\Rightarrow B\cap C \neq \phi$$
$$\Rightarrow$$ Option 4 is true.