Self Studies
Selfstudy
Selfstudy

Sets Test - 13

Result Self Studies

Sets Test - 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$S$$ be a non-empty subset of $$R$$. Consider the following statement:
    $$p$$ : There is a rational number $$x$$  such that $$x > 0$$.
    which of the following statements is the negation of the statement P ? 
    Solution
    $$\mathrm{P}$$: there is a rational number $$\mathrm{x}\in \mathrm{S}$$ such that $$\mathrm{x}>0$$
    $$\sim \mathrm{P}$$: Every rational number $$\mathrm{x}\in \mathrm{S}$$ satisfies $$\mathrm{x}\leq 0$$ 
    Hence, option 'B' is correct.
  • Question 2
    1 / -0
    Let $$A, B$$ and $$C$$ be sets such that $$\phi = A\cap B \subseteq C$$. Then which of the following statements is not true?
    Solution
    for $$A = C, A - C = \phi$$
    $$\Rightarrow \phi \subseteq B$$
    But $$A\not {\subseteq} B$$
    $$\Rightarrow$$ option $$1$$ is NOT true
    Let $$x \epsilon (C x \epsilon (C \cup A)\cap (C\cup B)$$
    $$\Rightarrow x\epsilon (C\cup A)$$ and $$x \epsilon (C\cup B)$$
    $$\Rightarrow (x \epsilon C$$ or $$x \epsilon A)$$ and $$(x\epsilon C$$ or $$x \epsilon B)$$
    $$\Rightarrow x \epsilon C$$ or $$x \epsilon (A\cap B)$$
    $$\Rightarrow x \epsilon C$$ or $$x\epsilon C$$ (as $$A\cup B\subseteq C)$$
    $$\Rightarrow x \epsilon C$$
    $$\Rightarrow (C \cup A)\cap (C\cup B)\subseteq ....(1)$$
    Now $$x \epsilon C\Rightarrow x \epsilon (C\cup A)$$ and $$x \epsilon (C \cup B)$$
    $$\Rightarrow x\epsilon (C\cup A)\cap (C\cup B)$$
    $$\Rightarrow C\subseteq (C\cup A)\cap (C \cup B) .....(2)$$
    $$\Rightarrow$$ from (1) and (2)
    $$C = (C\cup A)\cap (C\cup B)$$
    $$\Rightarrow$$ option 2 is true
    Let $$x \epsilon A$$ and $$x \not {\epsilon} B$$
    $$\Rightarrow x \epsilon (A - B)$$
    $$\Rightarrow x \epsilon C$$ (as $$A - B \subseteq C)$$
    Let $$x \epsilon A$$ and $$x \epsilon B$$
    $$\Rightarrow x \epsilon (A\cap B)$$
    $$\Rightarrow x \epsilon C$$ (as $$A\cap B\subseteq C)$$
    Hence $$x \epsilon A \Rightarrow x \epsilon C$$
    $$\Rightarrow A \subseteq C$$
    $$\Rightarrow$$ Option 3 is true
    as $$C\supseteq (A\cap B)$$
    $$\Rightarrow B\cap C\supseteq (A\cap B)$$
    as $$A\cap B\neq \phi$$
    $$\Rightarrow B\cap C \neq \phi$$
    $$\Rightarrow$$ Option 4 is true.

  • Question 3
    1 / -0
    The set $$\displaystyle A=\left\{ x:x\in { x }^{ 2 }=16\quad and\quad 2x=6 \right\} $$ equals:
    Solution
    Since, $$\displaystyle { x }^{ 2 }=16\Rightarrow x=\pm 4$$
    and $$\displaystyle 2x=6\Rightarrow x=3$$
    Hence, no value of $$x$$ is satisfied.
    $$\displaystyle \therefore A=\phi $$
  • Question 4
    1 / -0
    If A = {1, 2, 3, 4, 5, 6, 7, 8} and B = {1, 3, 5, 7}, then find $$A - B$$ and $$A \cap B$$
    Solution
    $$A = \{1, 2, 3, 4, 5, 6, 7, 8\} $$

    Very clearly $$A\cap B = \{1,3,5,7\}$$

    $$A-B $$ is nothing but $$ A-A\cap B$$

    $$A-B = \{2, 4, 6, 8\} $$ 

    Of course option D is the correct answer.
  • Question 5
    1 / -0
    Let $$A=\left\{ 1,2,3,4 \right\} $$ and $$B=\left\{ 2,3,4,5,6 \right\} $$ then $$A \triangle\ B$$ is equal to 
    Solution
    We have,
    $$A=\{1, 2, 3, 4\}$$ and $$B=\{2, 3, 4, 5, 6\}$$

    We know that,
    $$A\Delta B =(B-A)\cup(A-B)$$

    Therefore,
    $$A\Delta B =\{5, 6\} \cup \{1\}$$
    $$A\Delta B =\{1, 5, 6\}$$

    Hence, this is the answer.
  • Question 6
    1 / -0

    Let $$n$$ be a fixed positive integer. Let a relation $$R$$ defined on $$I$$ (the set of all integers) as follows: $$aRb$$ iff $$n/(a-b)$$, that is, iff $$a-b$$ is divisible by $$n$$, then, the relation $$R$$ is

    Solution
    $$R$$ is reflexive since for any integer $$a$$ we have $$a-a=0$$ and $$0$$ is divisible by $$n$$.
    Hence, $$aRa\quad \forall a\in I$$.
    $$R$$ is symmetric, let $$aRb$$.
    Then by definition of $$R$$, $$a-b=nk$$ where $$k\in I$$.
    Hence $$b-a=(-k)n$$ where $$-k\in I$$ and so $$bRa$$.
    Thus we have shown that $$aRb\Rightarrow bRa$$.
    $$R$$ is transitive, let $$aRb$$ and $$bRc$$.
    Then by definition of $$R$$, we have $$a-b={ k }_{ 1 }n$$ and $$b-c={ k }_{ 2 }n$$, where $${ k }_{ 1 },{ k }_{ 2 }\in I$$.
    It then follows that
    $$a-c=\left( a-b \right) +\left( b-c \right) ={ k }_{ 1 }n+{ k }_{ 2 }n=\left( { k }_{ 1 }+{ k }_{ 2 } \right) n$$
    where $${ k }_{ 1 }+{ k }_{ 2 }\in I$$
  • Question 7
    1 / -0
    If X $$=$$ (multiples of 2), Y $$=$$ (multiples of 5), Z $$=$$ (multiples of 10), then $$X \cap  ( Y \cap  Z )$$ is equal to
    Solution
    $$ We\quad can\quad write\quad the\quad given\quad sets\quad as\quad \\ X=\quad \left\{ 2,4,6,8,10,-----18,20,----28,30,---- \right\} \\ Y=\quad \left\{ 5,10,15,20,----30----40---- \right\} \\ Z=\quad \left\{ 10,20,30,40,----- \right\} \\ \therefore \quad Y\cap Z=\left\{ 10,20,30,---- \right\} \\ \therefore \quad X\cap \left( Y\cap Z \right) =\left\{ 10,20,30,----- \right\} =Z\\ \therefore \quad X\cap \left( Y\cap Z \right) =Z\quad \quad (Ans) $$
  • Question 8
    1 / -0
    If $$A=\left \{ 1,2,3 \right \};B=\left \{ 2,3,4 \right \},$$  then $$A-B=$$
    Solution

  • Question 9
    1 / -0
    A $$\bigcup \phi = $$
    Solution
    We've,
    $$A\cup \phi$$
    $$=A$$. [ Using direct formula (consistency property), since $$\phi \subset A$$]
  • Question 10
    1 / -0

    Suppose $${ A }_{ 1 },{ A }_{ 2 },...,{ A }_{ 30 }$$ are thirty sets, each with five elements and $${ B }_{ 1 },{ B }_{ 2 },...,{ B }_{ 30 }$$ are $$n$$ sets ecah with three elements. Let $$\displaystyle \bigcup _{ i=1 }^{ 30 }{ { A }_{ i }= } \bigcup _{ j=1 }^{ n }{ { B }_{ j } } =S$$

    If each element of $$S$$ belongs to exactly ten of the $${ A }_{ i }'s$$ and exactly none of the $${ B }_{ j }'s$$ then $$n=$$

    Solution
    Given $${ A }_{ i }$$'s are thirty sets with five elements each, so $$\displaystyle \sum _{ i=1 }^{ 30 }{ n\left( { A }_{ i } \right)  } =5\times 30=150$$   ...(1)
    If there are $$m$$ distinct elements in $$S$$ and each element of $$S$$ belongs to exactly $$10$$ of the $${ A }_{ i }$$'s, we have
    $$\displaystyle \sum _{ i=1 }^{ 30 }{ n\left( { A }_{ i } \right)  } =10m$$   ...(2)
    $$\therefore$$ from (1) and (2), we get $$10m=150\Rightarrow m=15$$   ...(3)
    Similarly $$\displaystyle \sum _{ j=1 }^{ 30 }{ n\left( { B }_{ j } \right)  } =3n$$ and $$\displaystyle \sum _{ j=1 }^{ 30 }{ n\left( { B }_{ j } \right)  } =9m$$
    $$\therefore 3n=9m \displaystyle \Rightarrow \frac { 9m }{ 3 } =3m=3\times 15=45$$   (from (3))
    Hence, $$n=45$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now