Self Studies

Sets Test - 25

Result Self Studies

Sets Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If universal set $$\xi = \{a, b, c, d, e, f,  g, h\}, A = \{b, c, d, e, f\},  B =\{a, b, c, g, h\}$$ and $$C = \{c, d, e, f, g\}$$, then find $$B - A$$
    Solution
    Given : $$\xi = \{a, b, c, d, e, f,  g, h\}, A = \{b, c, d, e, f\},  B =\{a, b, c, g, h\}$$ and $$C = \{c, d, e, f, g\}$$
    $$ B - A $$ will have elements of $$ B $$ which are not in $$ A $$

    So, $$ B - A  =\{a,g,h \}$$.
  • Question 2
    1 / -0
    If universal set $$\xi = \{a, b, c, d, e, f,  g, h\}, A = \{b, c, d, e, f\},  B =\{a, b, c, g, h\}$$ and $$C = \{c, d, e, f, g\}$$ find $$(B - C)'$$
    Solution
    Given : $$\xi = \{a, b, c, d, e, f,  g, h\}, A = \{b, c, d, e, f\},  B =\{a, b, c, g, h\}$$ and $$C = \{c, d, e, f, g\}$$
    $$ B - C $$ will have elements of $$ B $$ which are not in $$ C $$

    So, $$ B - C  = \{ a, b, h\} $$ 

    And $$  {(B-C)}'= \xi - (B-C) = $$ { $$ c,d,e,f,g $$ }
  • Question 3
    1 / -0
    If $$A = (6, 7, 8, 9), B = (4, 6, 8, 10)$$ and $$C = \{x : x \,\,\epsilon\,\,N : 2 < x \leq 7\}$$ ; find : $$B - B$$
    Solution
    Given : $$A = (6, 7, 8, 9), B = (4, 6, 8, 10)$$ and $$C = \{x : x \,\,\epsilon\,\,N : 2 < x \leq 7\}$$
    $$ B - B $$ will always be a null set it will contain elements of $$B$$ which are not in $$B$$ i.e. no elements.

    So, $$ B - B = \phi $$
  • Question 4
    1 / -0
    Find the set of all solutions of the equation $$2^{\left | y \right |}-\left | 2^{y-1}-1 \right |=2^{y-1}+1$$, the solution includes
    Solution
    Here, $$2^{\left | y \right |}-\left | 2^{y-1}-1 \right |=2^{y-1}+1$$
    We know to define modulus, we have three cases as
    Case I: y< 0
    $$\Rightarrow $$   $$2^{-y}+\left ( 2^{y-1}-1 \right )=2^{y-1}+1$$
    $$\Rightarrow $$   $$2^{-y}=2^{1}$$          (as when y< 0 |y|=-y and $$\left | 2^{y-1}-1 \right |=-\left ( 2^{y-1}-1 \right )$$)
    Hence, y=-1, which is true when y< 0          (i)
    Case II: $$0\leq y< 1$$
    $$\Rightarrow $$   $$2^{y}+\left ( 2^{y-1}-1 \right )=2^{y-1}+1$$
    $$\Rightarrow $$   $$2^{y}=2$$          (as when $$0\leq y< 1$$ |y|=-y and $$\left | 2^{y-1}-1 \right |=-\left ( 2^{y-1}-1 \right )$$)
    $$\Rightarrow $$   $$y=1$$, which shows no solution as,
       $$0\leq y< 1$$          (ii)
    Case III: $$y\geq 1$$
    $$\Rightarrow $$   $$2^{y}-\left ( 2^{y-1}-1 \right )=2^{y-1}+1$$
    $$\Rightarrow $$   $$2^{y}=2^{y-1}+2^{y-1}$$
    $$\Rightarrow $$   $$2^{y}=2.2^{y-1}$$          (as when $$y\geq 0$$ |y|=y and $$\left | 2^{y-1}-1 \right |=\left ( 2^{y-1}-1 \right )$$)
    $$\Rightarrow $$   $$2^{y}=2^{y}$$, which is an identity therefor, it is true $$\forall y\geq 1$$          (iii)
    Hence, from Eqs. (i), (ii), (iii) the solution of set is $$\left \{ y: y\geq 1\cup y=-1 \right \}$$.
  • Question 5
    1 / -0
    If $$Q=\{ x:x=\cfrac { 1 }{ y },$$ where $$ y\in N \} $$, then
    Solution
    Since $$\cfrac{1}{y}\ne 0$$, $$\cfrac{1}{y}\ne 2$$, $$\cfrac{1}{y}\ne \cfrac{-2}{3}$$ [$$\because y\in N$$]
    $$\therefore \cfrac{1}{y}$$ can be $$1$$

    Ans: B
  • Question 6
    1 / -0
    $$\displaystyle A=\left\{ x:x\neq x \right\} $$ represents:
    Solution
    $$x=x$$ for all $$x$$
    Hence, there is no element in A. 
    A is an empty set .
    $$A=\{ \}$$ 
  • Question 7
    1 / -0
    $$A=\left\{ x:x\neq x \right\} $$ represents-
    Solution
    It is fundamental concept that a void set is defined as, $$A =\{x : x\neq x\}=\{\}$$
  • Question 8
    1 / -0
    Which of the following statements is false?
    Solution
    $$\textbf{Step-1: Observing the Option 1}$$                     
                     $$\text{2 belongs to the sets of first five counting numbers}$$
                     $$\text{so option (A) is True.}$$
    $$\textbf{Step-2: Observing other option}$$
                     $$\text{f belongs to the set of consonants so option B is false}$$
                     $$\text{Rose belongs to the set of all fruits so option C is True}$$
                     $$\text{Asia belongs to the sets of continents so option D is also True}$$
    $$\textbf{Hence, the false statement is option B}$$
  • Question 9
    1 / -0
    The solution set of $$x+2<9$$ over a set of positive even integers is 
    Solution
    $$x+2<9$$
    $$x<7$$
    Since $$x$$ is even positive integer then $$x\in [2,7)$$.
    Hence the set of positive even integers which fall in the above set is 
    $$\{2,4,6\}$$.
  • Question 10
    1 / -0
    The solution set of $$3 x - 4 < 8$$ over the set of non-negative square numbers is 
    Solution
    $$3x-4<8$$
    $$3x<12$$
    $$x<4$$
    Hence set of non-negative square numbers belonging to the above set is 
    $$\{1\}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now