Self Studies

Sets Test - 30

Result Self Studies

Sets Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If n is a member of both set A$$=\left\{\displaystyle\frac{4}{7}, 1, \frac{5}{2}, 4, \frac{1}{2}, 7\right\}$$ and set B$$=\left\{\displaystyle\frac{4}{7}, \frac{7}{4}, 4, 7\right\}$$, which of the following must be true?
    I. n is an integer.
    II. $$4n$$ is an integer.
    III. $$n=4$$
    Solution
    None of the criteria satisfy all the elements in the intersection.

    $$\dfrac47$$ is not an integer nor is $$\dfrac {4\times 4}{7}$$ an integer.

    Of course 4 is not the only element in the intersection. Hence 3 is untrue.
  • Question 2
    1 / -0
    If A is a finite set, let $$P(A)$$ denote the set all subsets of A and $$n(A)$$ denote the number of elements in A. If for two finite sets X and Y, $$n[P(X)] = n[P(Y)] + 15$$ then find $$n(X)$$ and $$n(Y)$$
    Solution
    If $$X$$ is a finite set.
    Let,
    Number of elements in subset $$A$$ be $$n(A)=m$$
    Number of elements in subset $$B$$ be $$n(B)=n$$
    Then total number of subsets of finitr set containing say $$n$$ elements is $$2^n$$,
    Therefore,
    $$n[P(A)]=2^m$$, $$n[P(B)]=2^n$$.
    Substituting in equations we get,
    $$2^m=2^n+15$$
    $$2^m-2^n=15$$

    $$m=4,n=0$$

    Option $$\textbf A$$ is correct
  • Question 3
    1 / -0
    $$A - B =$$ _____
    Solution

    A-B means everything in A except for anything in $$A \cap B$$

    Pick an element x. Let $$ x\in(A-B)$$            

    $$\therefore x \in A \; but \; x \notin B$$

    $$\therefore x\in A , x\in B'$$

    $$x\in (A \cap B') = A- (A \cap B)$$

    or, $$x\in (A- B)$$

    Hence, $$A-B = (A \cap B') = A- (A \cap B)$$

  • Question 4
    1 / -0
    For any two sets $$A$$ and $$B$$, $$A-\left( A-B \right) $$ equals
    Solution
    Now, $$A-\left( A-B \right) =A-\left( A\cap { B }^{ C } \right) $$
                           $$=A\cap { \left( A\cap { B }^{ C } \right)  }^{ C }$$
                           $$=A\cap \left( { A }^{ C }\cup B \right) $$
                           $$=\left( A\cap { A }^{ C } \right) \cup \left( A\cap B \right) $$
                           $$=A\cap B$$
  • Question 5
    1 / -0

    Directions For Questions

    $$\mu = \left \{a, b, c, d, e, f, g, h, i, j\right \}$$
    $$P = \left \{a, b, c, e\right \}$$
    $$Q = \left \{b, c, d, f\right \}$$ and
    $$R = \left \{c, f, h, i, j\right \}$$
    Find the number of elements of the set

    ...view full instructions

    $$(P\cap Q)' \cup R$$
    Solution

  • Question 6
    1 / -0
    In a class, $$20$$ opted for Physics, $$17$$ for Maths, $$5$$ for both and $$10$$ for other subjects. The class contains how many students?
    Solution

    $$n(P) = 20$$

    $$n(M) = 17$$

    $$n(M \cap P) = 5$$

    $$n(other \; subjects)=10$$

    $$n(M\cup P) =n(M)+n(P)-n(M\cap P)$$

    $$n(M\cup P) =17+20-5 = 32$$

    Total students $$= n(P\cup M)+n (other \; subjects )$$

    $$32+10=42$$

  • Question 7
    1 / -0
    If $$A = \{ a, b, p, d\}  B = \{ p, d, e\}  C = \{p, e, f, g\}$$ then find 

    $$A \times (B \cap C ) $$ is equal to 
    Solution

  • Question 8
    1 / -0
    In a class of 250 students, 175 take mathematics and 142 take science. How many take both mathematics

    and science? (All take math and/or science.)
    Solution

  • Question 9
    1 / -0
    Let $$S = \left \{(a, b, c)\epsilon N\times N\times N : a + b + c = 21. a \leq b\leq c\right \}$$ and $$T = \left \{a, b, c)\epsilon N\times N\times N : a, b, c,\ are\ in\ A.P.\right \}$$, where $$N$$ is the set of all natural numbers. Then the number of elements in the set $$S\cap T$$ is
    Solution
    $$a + b + c = 21$$ and $$b = \dfrac {a + c}{2}$$
    $$\Rightarrow a + c = 14$$ and $$b = 7$$
    So, a can take values from $$1$$ to $$6$$, when $$c$$ ranges from $$13$$ to $$8$$, or $$a = b = c = 7$$
    So, $$7$$ triplets
  • Question 10
    1 / -0
    If X is a finite set. Let $$P(X)$$ denote the set of all subsets of X and let $$n(X)$$ denote the number of elements in X. If for two finite subsets $$A, B, n(P(A)) = n(P(B)) + 15$$ then $$n(B) = $$ ____, $$n(A) =$$ _____
    Solution
    If X is a finite set.
    Let,
    Number of element in a subset $$A$$ be $$n(A)$$ =$$m$$ and 
    Number of elements in subset $$B$$ be $$n(B)$$=$$n$$
    Then total number of subsets of finite set contaning say $$n$$ elements is $$2^n$$.
    Therefore,
    $$n[P(A)]=2^m$$,  $$n[P(B)]=2^n$$
    Substituting in equations , we get:-
    $$2^m=2^n+15$$
    $$2^m-2^n=15$$

    $$m=4,n=0$$

    Option $$\textbf A$$ is correct
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now