Self Studies
Selfstudy
Selfstudy

Sets Test - 45...

TIME LEFT -
  • Question 1
    1 / -0

    Suppose $$A_1 , A_2,... A_{30}$$ are thirty sets each having 5 elements and $$B_1, B_2,..., B_n$$ are n sets each with 3 elements , let $$\underset{i = 1}{\overset{30}{\cup}} A_i = \underset{j = 1}{\overset{n}{\cup}} B_j = S$$ and each element of S belongs to exactly 10 of the $$A_i's$$ and exactly 9 of the $$B_j'S$$. then n is equal to

  • Question 2
    1 / -0

    The set $$(A\cap B')'\cup (B\cap C)$$ is equal to?

  • Question 3
    1 / -0

    The value of $$\left( {A \cup B \cup C} \right) \cap \left( {A \cap {B^c} \cap {C^c}} \right) \cap {C^c}$$ is 

  • Question 4
    1 / -0

    If $$A = \{ 4,5,8,12 \} , B = \{ 1,4,6,9 \} \text { and } C = \{ 1,2,3,4 \}$$ then $$A - ( C - B ) =$$

  • Question 5
    1 / -0

    The number of subsets $$R\,of\,P\, = \left\{ {1,2,3,....8} \right\}$$ which satisfies the property 'There exist integers $$a < \,b < \,c$$ with $$a\, \in \,R,b\, \notin \,R,c\, \in \,R''\,$$ is

  • Question 6
    1 / -0

    Given $$n(U) =20, n(A) =12, n(B) =9, n(A \cap B) =4$$, where U is the universal set, A and B are subset of U, then $$n((A \cup B)^C)=$$

  • Question 7
    1 / -0

    if S is a set of p(x) is polynomial of degree <2 such that p(0)=, P(1)=1, p(x)>0 $$\forall \quad x\quad \varepsilon $$ (0, 1) then 

  • Question 8
    1 / -0

    X and Y are two sets and $$f:X\rightarrow Y$$. If $$f(c)=\left\{ y;c\subset X,y\subset Y \right\} $$ and $${ f }^{ 1 }(d)=\left\{ x;d\subset Y,x\subset X \right\} $$, then the true statement is

  • Question 9
    1 / -0

    A = {n/n is a digits in the number 33591} and $$B=\left\{ n/n\in N,n<10 \right\} ,$$ then $$B-A = $$

  • Question 10
    1 / -0

    Let $$A,B,C$$ finite sets. Suppose then $$n(A)=10, n(B)=15, n(C)=20, n(A\cap B)=8$$ and $$n(B\cap C)=9$$. Then the possible value of $$n(A\cup B\cup C)$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now