Self Studies

Conic Sections ...

TIME LEFT -
  • Question 1
    1 / -0

    The length of the latus rectum of the parabola, $$y^2-6y+5x=0$$ is

  • Question 2
    1 / -0

    The equation $${ x }^{ 2 }+{ y }^{ 2 }+4x+6y+13=0\quad $$ represents 

  • Question 3
    1 / -0

    Length of the latus rectum of the parabola $$25[(x-2)^{2}+(y-3)^{2}]=(3x-4y+7)^{2}$$ is:

  • Question 4
    1 / -0

    If $$  P S Q  $$ is the focal chord of the parabola $$  y^{2}=8 x  $$ such that $$  S P=6  $$ . Then the length of $$SQ$$ is

  • Question 5
    1 / -0

    The equation of circle at center $$(3,4)$$ and radius $$5$$.

  • Question 6
    1 / -0

    The curve for which the normal at any point (x,y) and the line joining origin to that point form and isosceles triangle with the x-axis as base is 

  • Question 7
    1 / -0

    If C is the centre and A, B are two points on the conic $${ 4x }^{ 2 }+{ 9y }^{ 2 }-8x-36y+4=0$$ such that $$\angle ABC-\dfrac { \pi  }{ 2 } ,$$ then $$\begin{matrix} 1 & \quad \quad +\quad \quad \quad \quad \quad 1 \\ { CA }^{ 2 } & \quad \quad \quad \quad { CB }^{ 2 } \end{matrix}=$$

  • Question 8
    1 / -0

    If two distinct chords of a parbola $${ y }^{ 2 }=4ax$$ passing through (a , 2a) are bisected on the line x + y =1, then the length of the latnsrectum can be 

  • Question 9
    1 / -0

    If the parabola $${y^2} = 4\,\,ax$$ passes through the point $$\left( { - 3,2} \right),$$ then the length of its latus rectum is 

  • Question 10
    1 / -0

    Match the column I with column II and mark the correct option from the codes given below.

    Column IColumn II
    i
    ii
    iii
    iv
    v
    $$xy+a^2-a(x+y)$$
    $$2x^2-72xy+23y^2-4x-28y-48=0$$
    $$6x^2-5xy-6y^2+14x+5y+4=0$$
    $$14x^2-4xy+11y^2-44x-58y+71=0$$
    $$4x^2-4xy+y^2-12x+6y+9=0$$
    p
    q
    r
    s

    Ellipse
    Hyperbola
    Parabola
    Pair of straight lines

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now