Self Studies

Introduction to...

TIME LEFT -
  • Question 1
    1 / -0

    If two vertices of an equilateral triangle are (2,1,5)(2, 1, 5) and (3,2,3)(3, 2, 3), then its third vertex is:

  • Question 2
    1 / -0

    The point which is equidistant from the points (1,1,3),(2,1,2),(0,5,6)(-1, 1, 3), (2, 1, 2), (0, 5, 6) and (3,2,2)(3,2, 2) is

  • Question 3
    1 / -0

    The point which is equidistant from the points (a,0,0),(0,b,0),(0,0,c)(a, 0, 0), (0, b, 0), (0, 0, c) and (0,0,0)(0, 0, 0) is:

  • Question 4
    1 / -0

    If the extremities of a diagonal of a square are (1,2,3)(1, -2, 3) and (2,3,5)(2, -3, 5), then the length of its side is:

  • Question 5
    1 / -0

    If A,BA, B are the feet of the perpendiculars from (2,4,5)(2, 4, 5) to the xx-axis, yy-axis respectively, then the distance ABAB is

  • Question 6
    1 / -0

    If A(0,4,1),B(a,b,c),C(4,5,0),D(2,6,2)A(0, 4, 1), B(a, b, c), C(4, 5, 0), D(2, 6, 2) are the consecutive vertices of a square, then the distance BDBD is:

  • Question 7
    1 / -0

    If (p,q,r)(p, q, r) is equidistant from (1,2,3),(2,3,1)(1, 2, -3), (2, -3, 1) and (3,1,2)(-3, 1, 2), then p+q+rp +q + r ==

  • Question 8
    1 / -0

    A=(1,1,2)A = (1, -1, 2) and B=B = (2,3,7)(2, 3, 7) are two points. lf P, OP,\ O divide ABAB in the ratios 2:3,2:32:3, -2:3 respectively then Px+Qy=P_x+Q_y=

  • Question 9
    1 / -0

    If  A=(1,2,3)\mathrm{If}   \mathrm{A}=(1, 2, 3) , B=(2,3,4)\mathrm{B}=(2,3, 4) and C\mathrm{C} is a point of trisection ofAB\mathrm{A}\mathrm{B} such that Cx+Cy=133\displaystyle \mathrm{C}_{\mathrm{x}}+\mathrm{C}_{\mathrm{y}}=\frac{13}{3} then Cz=\mathrm{C}_{\mathrm{z}}=

  • Question 10
    1 / -0


    A=(2,4,5)A=(2, 4, 5) and B=(3,5,4)B=(3,5, -4) are two points. lf the XYXY-plane, YZYZ-plane divide ABAB in the ratio a:ba:b and p:q p:q respectively, then ab+pq=\dfrac {a}{b}+\dfrac {p}{q}=

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now