Self Studies
Selfstudy
Selfstudy

Introduction to Three Dimensional Geometry Test - 14

Result Self Studies

Introduction to Three Dimensional Geometry Test - 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If two vertices of an equilateral triangle are $$(2, 1, 5)$$ and $$(3, 2, 3)$$, then its third vertex is:
    Solution
    Let the coordinates of third vertex be $$(x,y,z)$$
    The distance of third vertex from above two vertices are same
    So, After distance form between $$(2,1,5)\ and (x,y,z)$$ {and equate it with distance between $$(3,2,3)\ and (x,y,z)$$. After simplification we get
    $$\Rightarrow { x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 }-4x-2y-10z+30={ x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 }-6x-4y-6z+22$$
    $$\Rightarrow x+y-2z+4=0$$
    Among given options , only $$(4,0,4)$$ satisfies above equation
    Therefore the correct option is $$B$$
  • Question 2
    1 / -0
    The point which is equidistant from the points $$(-1, 1, 3), (2, 1, 2), (0, 5, 6)$$ and $$(3,2, 2)$$ is
    Solution
    Let $$(x,y,z)$$ be the points equidistant from the given points by the distance $$d$$. 
    Then, we have the equations
    $$(x+1)^2+(y-1)^2+(z-3)^2=d^2$$
    $$(x-2)^2+(y-1)^2+(z-2)^2=d^2 $$
    $$x^2+(y-5)^2+(z-6)^2=d^2$$
    $$(x-3)^2+(y-2)^2+(z-2)^2=d^2$$
    Using the equation 1 and 2 we get,
     $$z=3x+1$$ 
    And using equations 2 and 4 we get, 
    $$y=4-x$$. 
    Substituting these values in equation 1 and 3 we get, 
    $$x^2+2x+1+9-6x+x^2+9x^2-12x+4$$
    $$=x^2+x^2+2x+1+9x^2-30x+25$$
    $$\Rightarrow x=1$$. 
    Hence, the point is given by $$(x,4-x,3x+1)=(1,3,4)$$.
  • Question 3
    1 / -0
    The point which is equidistant from the points $$(a, 0, 0), (0, b, 0), (0, 0, c)$$ and $$(0, 0, 0)$$ is:
    Solution
    Let the point $$(x,y,z)$$ be the equidistant from $$(a,0,0), (0,b,0), (0,0,c)$$ and $$(0,0,0)$$.
    $$\Rightarrow (x-a)^2+(y-0)^2+(z-0)^2=(x-0)^2+(y-b)^2+(z-0)^2$$
    $$=(x-0)^2+(y-0)^2+(z-c)^2=(x-0)^2+(y-0)^2+(z-0)^2$$
    Solving above equations, we get $$x=\dfrac{a}{2}, y=\dfrac{b}{2}, z=\dfrac{c}{2}$$
  • Question 4
    1 / -0
    If the extremities of a diagonal of a square are $$(1, -2, 3)$$ and $$(2, -3, 5)$$, then the length of its side is:
    Solution
    The extremities of a diagonal of a square are given by $$(1,-2,3)$$ and $$(2,-3,5)$$.
    The length of this diagonal will be given by $$ \sqrt {({1}^{2} + {1}^{2} + {2}^{2} )}  =  \sqrt{6 }$$
    Length of a side $$ \times \sqrt{2} = $$ Length of diagonal
    So, the length of the side of the square will be given by $$ = \sqrt {3 } $$
  • Question 5
    1 / -0
    If $$A, B$$ are the feet of the perpendiculars from $$(2, 4, 5)$$ to the $$x$$-axis, $$y$$-axis respectively, then the distance $$AB$$ is
    Solution
    Since the point is given by $$(2,4,5)$$ and $$A, B$$ are the projections on the $$x$$ and $$y$$ axes respectively,
    $$A = (2,0,0) , B = (0,4,0)$$
    The distance $$AB$$ is given by $$ \sqrt {({2}^{2} + {4}^{2})} = \sqrt{20}  = 2\sqrt {5} $$
  • Question 6
    1 / -0
    If $$A(0, 4, 1), B(a, b, c), C(4, 5, 0), D(2, 6, 2)$$ are the consecutive vertices of a square, then the distance $$BD$$ is:
    Solution
    Given vertices of square are $$A(0,4,1),B(a,b,c),C(4,5,0),D(2,6,2)$$.
    The diagonals of a square are equal in lengths.
    Length of diagonal $$BD =$$ Length of diagonal $$AC$$
    $$BD =  \sqrt {({4}^{2} + {1}^{2} + {1}^{2})}  =  3\sqrt{2} $$
  • Question 7
    1 / -0
    If $$(p, q, r)$$ is equidistant from $$(1, 2, -3), (2, -3, 1)$$ and $$(-3, 1, 2)$$, then $$p +q + r$$ $$=$$
    Solution
    $$\textbf{Step 1: Check the type of the triangle formed by the given points.}$$

                    $$\text{The given points are }\mathrm{A(1,2,-3),B(2,-3,1)\ and\ C(-3,1,2).}$$

                    $$\text{We know, distance between }\mathrm{(x_1,y_1,z_1)\ and\ (x_2,y_2,z_2)=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}}$$

                    $$\text{Distance between A and B: }$$
                    $$\mathrm{AB=\sqrt{(2-1)^2+(-3-2)^2+(1+3)^2}}$$
                           $$\mathrm{=\sqrt{1+25+16}}$$
                           $$\mathrm{=\sqrt{42}}$$

                    $$\text{Distance between B and C: }$$
                    $$\mathrm{BC=\sqrt{(-3-2)^2+(1+3)^2+(2-1)^2}}$$
                           $$\mathrm{=\sqrt{25+16+1}}$$
                           $$\mathrm{=\sqrt{42}}$$

                    $$\text{Distance between C and A: }$$
                    $$\mathrm{CA=\sqrt{(-3-1)^2+(1-2)^2+(2+3)^2}}$$
                           $$\mathrm{=\sqrt{16+1+25}}$$
                           $$\mathrm{=\sqrt{42}}$$

                    $$\mathrm{\therefore AB=BC=CA }$$
                    $$\text{So, triangle ABC is an equilateral triangle.}$$

    $$\textbf{Step 2: Find the required value using suitable property.}$$

                    $$\text{Given that, (p,q,r) is equidistant from the points A, B and C.}$$
                    $$\therefore\text{(p,q,r) is the circumcentre of triangle ABC.}$$
                    $$\text{We know, for equilateral triangles circumference and centroid are same point.}$$
                    $$\text{Centroid of a triangle with vertices } \mathrm{(x_1,y_1),(x_2,y_2)\ and\ (x_3,y_3)=\left(\dfrac{x_1+x_2+x_3}{3},\dfrac{y_1+y_2+y_3}{3}\right)}$$

                    $$\therefore\text{Centroid of triangle ABC } \mathrm{=\left(\dfrac{1+2-3}{3},\dfrac{2-3+1}{3},\dfrac{-3+1+2}{3}\right)=(0,0,0)}$$

                    $$\text{So, circumcentre of triangle ABC } \mathrm{=(0,0)}$$

                    $$\therefore\mathrm{(p,q,r)=(0,0,0)}$$

                    $$\mathrm{Thus,\ p+q+r=0+0+0=0}$$

    $$\textbf{Hence, the correct option is C.}$$
  • Question 8
    1 / -0
    $$A = (1, -1, 2)$$ and $$B =$$ $$(2, 3, 7)$$ are two points. lf $$P,\ O$$ divide $$AB$$ in the ratios $$2:3, -2:3$$ respectively then $$P_x+Q_y=$$
    Solution
    P divides line joining $$A(1,-1,2)$$ and $$B(2,3,7)$$ in the ratio $$2:3$$
    $$\therefore P_x = \cfrac{2 \times 2 + 3 \times 1}{2 + 3} = \cfrac{7}{5}$$
    Similarly, Q divides line joining $$A(1,-1,2)$$ and $$B(2,3,7)$$ in the ratio $$-2:3$$
    $$\therefore Q_y = \cfrac{-2 \times 3 + 3 \times -1}{-2 + 3} = -9$$
    $$\Rightarrow P_x + Q_y = -9 + \cfrac{7}{5} = \cfrac{-38}{5}$$
  • Question 9
    1 / -0
    $$\mathrm{If}   \mathrm{A}=(1, 2, 3)$$ , $$\mathrm{B}=(2,3, 4)$$ and $$\mathrm{C}$$ is a point of trisection of$$\mathrm{A}\mathrm{B}$$ such that $$\displaystyle \mathrm{C}_{\mathrm{x}}+\mathrm{C}_{\mathrm{y}}=\frac{13}{3}$$ then $$\mathrm{C}_{\mathrm{z}}=$$
    Solution
    Given : $$A=(1,2,3), B=(2,3,4)$$

    $$C$$ is a point of trisection of $$AB$$

    $$\implies C=\dfrac{A+2B}{3}$$.............($$\because$$ this cuts the line in the ratio of $$1:2$$)

    $$\implies C=\dfrac{(1,2,3)+2(2,3,4)}{3}$$

    $$\implies C=\dfrac{(1+4,2+6,3+8)}{3}$$

    $$\implies C=\left(\dfrac{5}{3},\dfrac{8}{3},\dfrac{11}{3}\right)$$

    $$\therefore\ C_x=\dfrac{5}{3}, C_y=\dfrac{8}{3}, C_z=\dfrac{11}{3}$$

    Now, $$C_x + C_y=\dfrac{5}{3}+\dfrac{8}{3}=\dfrac{13}{3}$$

    Thus, $$C_z=\dfrac{11}{3}$$
    Hence, option B is correct.
  • Question 10
    1 / -0

    $$A=(2, 4, 5)$$ and $$B=(3,5, -4)$$ are two points. lf the $$XY$$-plane, $$YZ$$-plane divide $$AB$$ in the ratio $$a:b$$ and $$ p:q$$ respectively, then $$\dfrac {a}{b}+\dfrac {p}{q}=$$
    Solution
    Given points are $$ A(2,4,5)$$ and $$B(3,5,-4)$$.
    Let the $$XY$$ plane divides the line $$AB$$ in the ratio $$\lambda:1$$.
    Then the $$z$$ coordinate of $$XY$$ plane is zero.
    $$0=5-4(\lambda)$$
    $$\lambda=\dfrac {5}{4}=\dfrac {a}{b}$$
    $$YZ$$ plane divides the line $$AB$$ such that x coordinate is zero.
    $$0=3(\alpha)+2$$
    $$\alpha=\dfrac {-2}{3}=p:q$$
    Now, $$\dfrac {a}{b}+\dfrac {p}{q}=\dfrac {5}{4}-\dfrac {2}{3}=\dfrac {7}{12}$$
    Hence, option C is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now