Self Studies
Selfstudy
Selfstudy

Introduction to Three Dimensional Geometry Test - 18

Result Self Studies

Introduction to Three Dimensional Geometry Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value(s) of $$\lambda $$, for which the triangle with vertices $$(6,10,10),(1,0,-5)$$ and $$(6,-10,\lambda)$$ will be a right angled triangle is/ are
    Solution
    Let the given points be $$A,B$$ and $$C$$ respectively.
    Then, $${ AB }^{ 2 }=350,{ AC }^{ 2 }=500\lambda -20\lambda +{ \lambda  }^{ 2 }{ BC }^{ 2 }=150+10\lambda +{ \lambda  }^{ 2 }$$
    Now, $$\displaystyle{ AB }^{ 2 }+{ AC }^{ 2 }={ BC }^{ 2 }\Rightarrow 350+500-20\lambda +{ \lambda  }^{ 2 }=150+10\lambda +{ \lambda  }^{ 2 }\Rightarrow \lambda =\dfrac { 70 }{ 3 } $$
    Next, $${ AB }^{ 2 }+BC^{ 2 }={ AC }^{ 2 }\Rightarrow 250+150+10\lambda +{ \lambda  }^{ 2 }=500-20\lambda +{ \lambda  }^{ 2 }\Rightarrow \lambda =0$$
    Further, $${ BC }^{ 2 }+AC^{ 2 }={ AB }^{ 2 }\Rightarrow 150+10\lambda +12+500-20\lambda +{ \lambda  }^{ 2 }=350\Rightarrow { \lambda  }^{ 2 }-5\lambda +150=0$$,
    which has no real solution.
    $$\therefore $$ the triangle is right angle for $$\displaystyle\lambda=0,\dfrac { 70 }{ 3 }  $$
  • Question 2
    1 / -0
    $$P(0,5,6),Q(1,4,7),R(2,3,7)$$ and $$S(3,5,16)$$ are four points in the space. The point nearest to the origin $$O(0,0,0)$$ is
    Solution
    The $$4$$ points are as given.
    We calculate their individual distance from the origin.
    $$OP =$$ $$ {({5}^{2} + {6}^{2})}^{0.5} $$ = $$ {(61)}^{0.5} $$
    $$OQ =$$ $$ {({1}^{2} + {4}^{2} + {7}^{2} )}^{0.5} $$ = $$ {(66)}^{0.5} $$
    $$OR =$$ $$ {({2}^{2} + {3}^{2} + {7}^{2} )}^{0.5} $$ = $$ {(62)}^{0.5} $$
    $$OS =$$ $$ {({3}^{2} + {5}^{2} + {16}^{2} )}^{0.5} $$= $$ {(290)}^{0.5} $$
    Hence, $$P$$ is the nearest to the origin.
  • Question 3
    1 / -0
    If $$A(\cos\alpha,\sin\alpha, 0),B(\cos\beta,\sin\beta, 0)$$, $$C(\cos\gamma,\sin\gamma,0)$$ are vertices of $$\Delta ABC$$ and let 
    $$\cos \alpha+\cos\beta+\cos\gamma=3{a}$$, $$\sin\alpha+\sin\beta+\sin\gamma =3b$$, then correct matching of the following is:
    List : I
    List : II
    A. Circumcentre
    $$1. (3a,3b,0)$$
    B. Centroid
    $$2. (0,0,0)$$
    C. Ortho centre
    $$3. (a,b,0)$$
    Solution
    We know, $${ \sin }^{ 2 }\alpha +{ \cos }^{ 2 }\alpha =1$$
    Similarly it is true for other three coordinates.
    These are points on a circle of unit radius.
    By observation $$(0,0,0)$$ would be the circumcentre of the circle.
    Centroid $$=\cfrac { (\cos{ \alpha  }_{ 1 }+\cos{ \alpha  }_{ 2 }+\cos{ \alpha  }_{ 3 }) }{ 3 } ,\cfrac { (\sin{ \alpha  }_{ 1 }+\sin{ \alpha  }_{ 2 }+\sin{ \alpha  }_{ 3 }) }{ 3 } ,0$$
    Centroid $$=(\cfrac { 3a }{ 3 } ,\cfrac { 3b }{ 3 } ,0)$$=$$(a,b,0)$$
    Centroid divides line segment joining orthocentre and circumcentre in the ratio 2:1.
    Orthocentre $$=(3a,3b,0)$$
  • Question 4
    1 / -0
    Arrange the points: $$\mathrm{A}(1,2-3), \mathrm{B}(-1,2,-3), \mathrm{C}(-1,-2-3)$$ and $$\mathrm{D}(1,-2, -3)$$ in the increasing order of their octant numbers:
    Solution
     Octant$$I$$ $$II$$$$III$$ $$IV$$ $$V$$ $$VI$$ $$VII$$$$VIII$$
     Signs:$$+,+,+$$ $$-,+,+$$$$-,-,+$$ $$+,-,+$$ $$+,+,-$$$$-,+,-$$$$-,-,-$$ $$+,-,-$$ 
    Based on this, increasing order is
    $$ A,B ,C,D$$
  • Question 5
    1 / -0
    In the $$\Delta ABC$$, if $$AB=\sqrt{2}; AC=\sqrt{20}, B=(3,2,0)$$ and $$C=(0,1,4)$$, then the length of the median passing through $$A$$ is
    Solution
    Using Apollonius theorem: In any triangle $$ABC$$, if $$AD$$ is a median, 
    then $${ AB }^{ 2 }+{ AC }^{ 2 }=2({ BD }^{ 2 }+{ AD }^{ 2 })$$
    $$D$$ is the midpoint of $$BC$$
    Coordinates of $$D$$ are $$\left(\dfrac{3}{2},\dfrac{3}{2},2\right)$$ and $$(BD)^2=\dfrac{26}{4}$$
    $$\Rightarrow  { AB }^{ 2 }+{ AC }^{ 2 }=2({ BD }^{ 2 }+{ AD }^{ 2 })$$
    $$\Rightarrow AD = \dfrac { 3 }{ \sqrt { 2 }  } $$
  • Question 6
    1 / -0
    The extremities of a diagonal of a rectangular parallelopiped whose faces are parallel to the reference planes are $$(-2, 4, 6)$$ and $$(3, 16, 6)$$. The length of the base diagonal is
    Solution
    By looking $$(-2, 4, 6)$$ and $$(3, 16, 6)$$ extremities of a diagonal both lie in same plane ($$xy$$- plane).

    Base diagonal is diagonal joining these two extremities.

    So, length of diagonal $$= \sqrt { { (3+2 })^{ 2 }+{ (16-4) }^{ 2 }+{ (6-6) }^{ 2 } }$$ 
                                         $$=13$$
  • Question 7
    1 / -0
    Assertion (A): The points $$A(2,9,12) ,B(1,8,8) ,C(2,11,8) D(1,12,12)$$ are the vertices of a rhombus
    Reason (R): $$AB = BC = CD = DA$$ and $$AC = BD$$
    Solution
    Given: The points $$A(2,9,12) ,B(1,8,8) ,C(2,11,8) D(1,12,12)$$ are the vertices of a rhombus. 
    So using distance formula Reason is not true. 
    Thus both A and R false. 
  • Question 8
    1 / -0
    If the plane a  $$2x-3y+5_{Z}-2=0$$ divides the line segment joining $$(1, 2, 3)$$ and $$(2, 1, k)$$ in the ratio $$9 : 11$$, then $$k$$ is
    Solution
    Coordinate of the point which divides the line segment joining the points $$ (1,2,3)$$ and $$(2,1,k)$$ in the ratio $$9:11$$ are $$\left(\dfrac{29}{20}, \dfrac{31}{20}, \dfrac{9k+33}{20}\right)$$
    Also, this point will lie on the given plane

    $$\Rightarrow 2\times\dfrac{29}{20}-3\times\dfrac{31}{20}+5\times\dfrac{9k+33}{20}-2 =0$$

    $$\Rightarrow k = -2$$
    Hence, option B is correct.
  • Question 9
    1 / -0
    The point equidistant from the points $$(0,0,0), (1,0,0), (0,2,0)$$ and $$(0,0,3)$$ is
    Solution
    Equation of sphere passes through origin is given by

    $$x^2+y^2+z^2+ax+by+cz=0 ...(1)$$

    Given, it also passes through $$(1,0,0),(0,2,0),0,0,3)$$

    $$1+a=0\Rightarrow a = -1$$

    $$4+2b=0\Rightarrow b = -2$$

    and $$ 9+3c=0\Rightarrow c = -3$$

    $$\therefore$$the equation of the sphere becomes $$x^2+y^2+z^2-x-2y-3z=0$$

    Comparing with $$x^2+y^2+z^2+2gx+2fy+2kz+C=0$$

    Therefore, the point equidistant from all the given four point will be the centre of the sphere $$(1)$$ passing through all these points which is $$\left(\dfrac{1}{2},1, \dfrac{3}{2}\right)i.e. the \  centre$$.
  • Question 10
    1 / -0
    Assertion(A): If centroid and circumcentre of a triangle are known its orthocentre can be found.
    Reason (R) : Centriod, orthocentre and circumcentre of a triangle are collinear
    Solution
    Centroid, orthocentre and circumcentre are collinear and centroid divides
    the line joining orthocentre and circumcentre in the ratio $$2:1$$ so if any two points are given then this one can be found.
    Hence option 'A'  is the correct choice 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now