Self Studies

Introduction to Three Dimensional Geometry Test - 24

Result Self Studies

Introduction to Three Dimensional Geometry Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$P(x,y,z)$$ is a point on the line segment joining $$A (2,2,4)$$ and $$B(3,5,6)$$ such that projection of $$\vec{OP}$$ on axes are $$\displaystyle \frac{13}{5},\frac{19}{5},\frac{26}{5}$$ respectively, then P divide AB in the ratio
    Solution
    $$\vec{OP} = \dfrac{13}{5}\hat{i} + \dfrac{19}{5}\hat{j} + \dfrac{26}{5}\hat{k} = \vec{P} - \vec{O}$$
    where $$ \vec{P} =$$ origin vector
                   $$= 0\hat{i} + 0\hat{j} + 0\hat{k}$$
    $$OP = (\dfrac{13}{5}, \dfrac{19}{5}. \dfrac{26}{5})$$ so, $$\vec{P} = \dfrac{13}{5}\hat{i} + \dfrac{19}{5}\hat{j} + \dfrac{26}{5}\hat{k}$$
    If $$(x, y, z)$$ divides $$(x_1, y_1, z_1)$$ and $$(x_2, y_2, z_2)$$ in the ratio $$\alpha : 1$$
    $$\therefore x = \dfrac{\alpha x_2 + x_1}{\alpha + 1}, y = \dfrac{\alpha y_2 + y_1}{\alpha + 1}, z = \dfrac{\alpha z_2 + z_1}{\alpha + 1}$$
    Then,
    $$x = \dfrac{3\alpha + 2}{\alpha + 1}, y = \dfrac{5\alpha + 2}{\alpha + 1}, z = \dfrac{6\alpha + 4}{\alpha + 1}$$
    $$(x, y, z)$$ given $$= (\dfrac{13}{5}, \dfrac{19}{5}, \dfrac{26}{5})$$
    $$\therefore \dfrac{3\alpha + 2}{\alpha + 1} = \dfrac{13}{5} \Rightarrow 13\alpha + 13 = 15\alpha + 10$$
    $$\Rightarrow 3 = 2\alpha \Rightarrow \alpha = \dfrac{3}{2}$$
    For $$z$$ co-ordinates,
    $$\dfrac{19}{5} = \dfrac{5\alpha + 2}{\alpha + 1} \Rightarrow 19\alpha + 19 = 25\alpha + 10$$
    $$\Rightarrow 6\alpha = 9 \Rightarrow \alpha = \dfrac{3}{2}$$
    $$\alpha : 1 = 3 : 2$$
  • Question 2
    1 / -0

    Find the distance between the points whose position vectors are given as follows

    $$-2\hat i+3\hat j+5\hat k, 7\hat i-\hat k$$

    Solution
    Distance Between two position vectors $$a\hat i+b\hat j+c\hat k$$ and $$x\hat i+y\hat j+z\hat k$$ is given by
    $$\sqrt { \left( a-x \right) ^{ 2 }+\left( b-y \right) ^{ 2 }+\left( c-z \right) ^{ 2 } } $$
    Given $$-2\hat i+3\hat j+5\hat k$$, $$7\hat i-\hat k$$
    Distance $$=\sqrt { \left( -2-7 \right) ^{ 2 }+\left( 3-0 \right) ^{ 2 }+\left( 5+1 \right) ^{ 2 } } $$
                    $$=\sqrt { 126 } $$
                    $$=3\sqrt { 14 } $$
  • Question 3
    1 / -0
    The points $$A(5, 1, 1), B(7, 4, 7), C(1, 6, 10)$$ and $$D(-1, 3, 4)$$ are the vertices of a
    Solution
    Given points are $$ A(5, 1, 1), B(7, 4, 7), C(1, 6, 10)$$ and $$D(-1, 3, 4)$$

    $$AB=\sqrt{4+9+36}=7$$

    $$BC=\sqrt{36+4+9}=7$$

    $$CD=\sqrt{4+9+36}=7$$

    $$AD=\sqrt{36+4+9}=7$$

    $$AC= \sqrt{16+25+81}=\sqrt{122}$$

    $$BD=\sqrt{64+1+9}=\sqrt{74}$$

    All sides are equal and diagonals are not equal.

    Hence, $$ABCD$$ is a Rhombus.

    Hence, option C.
  • Question 4
    1 / -0
    If $$P\left( x,y,z \right) $$ is a point on the line segment joining $$Q\left( 2,2,4 \right) $$ and $$R\left( 3,5,6 \right) $$ such that the projection of $$\overline { OP } $$ on the axes are $$\displaystyle\frac { 13 }{ 5 } ,\frac { 19 }{ 5 } ,\frac { 26 }{ 5 } ,$$ respectively, then $$P$$ divides $$QR$$ in the ratio
    Solution
    Since $$OP$$ has projections $$\displaystyle\frac { 13 }{ 5 } ,\frac { 19 }{ 5 } $$ and $$\displaystyle\frac { 26 }{ 5 } $$ on the coordinate axes,
    therefore $$\displaystyle OP=\frac { 13 }{ 5 } \hat i+\frac { 19 }{ 5 } \hat j+\frac { 26 }{ 5 } \hat k$$
    Suppose $$P$$ divides the join of $$Q\left( 2,2,4 \right) $$ and $$R\left( 3,5,6 \right) $$ in the ratio $$\lambda:1$$
    Then, the position vector of $$P$$ is
    $$\displaystyle \left( \frac { 3\lambda +2 }{ \lambda +1 }  \right)\hat i+\left( \frac { 5\lambda +2 }{ \lambda +1 }  \right) \hat j+\left( \frac { 6\lambda +4 }{ \lambda +1 }  \right) \hat k$$

    $$\displaystyle\therefore \frac { 13 }{ 5 }\hat  i+\frac { 19 }{ 5 }\hat  j+\frac { 26 }{ 5 } \hat k=\left( \frac { 3\lambda +2 }{ \lambda +1 }  \right) \hat i+\left( \frac { 5\lambda +2 }{ \lambda +1 }  \right) \hat j+\left( \frac { 6\lambda +4 }{ \lambda +1 }  \right) \hat k$$

    $$\displaystyle\Rightarrow \frac { 3\lambda +2 }{ \lambda +1 } =\frac { 13 }{ 5 } ,\frac { 5\lambda +2 }{ \lambda +1 } =\frac { 19 }{ 5 } ,\frac { 6\lambda +4 }{ \lambda +1 } =\frac { 26 }{ 5 } $$

    $$\displaystyle\Rightarrow 2\lambda =3$$
    $$\Rightarrow \lambda =\dfrac { 3 }{ 2 } $$
  • Question 5
    1 / -0
    Find the distance between the points whose position vectors are given as follows
    $$(-1,1,3), (0,5,6)$$
    Solution
    Distance Between two points $$(a,b,c)$$ and $$(x,y,z)$$ is given by
    $$\sqrt { \left( a-x \right) ^{ 2 }+\left( b-y \right) ^{ 2 }+\left( c-z \right) ^{ 2 } } $$
    Given $$(-1,1,3)$$, $$(0,5,6)$$
    Distance $$=\sqrt { \left( -1-0 \right) ^{ 2 }+\left( 1-6 \right) ^{ 2 }+\left( 3-6 \right) ^{ 2 } } $$
                    $$=\sqrt { 26 } $$
  • Question 6
    1 / -0
    The plane $$XOZ$$ divides the join of $$(1, - 1, 5)$$ and $$(2, 3, 4)$$ in the ratio $$\lambda : 1$$, then $$\lambda$$ is -
    Solution
    The plane XOZ divides the join of $$(1, - 1, 5)$$ and $$(2, 3, 4)$$ in the ratio $$λ : 1$$
     $$i.e.,y = 0 $$ divide the join of $$(1, -1, 5)$$ and $$(2, 3, 4)$$ in the ratio $$λ : 1. $$
    $$\therefore \dfrac {3λ−1}{λ+1}  = 0 ⇒λ=\dfrac{1}{3}$$.
  • Question 7
    1 / -0
    Find the distance between the pairs of points whose cartesian coordinates are $$(2,3,-1), (2,6,2).$$
    Solution
    Distance Between two points $$(a,b,c)$$ and $$(x,y,z)$$ is given by
    $$\sqrt { \left( a-x \right) ^{ 2 }+\left( b-y \right) ^{ 2 }+\left( c-z \right) ^{ 2 } } $$
    Given $$(2,3,-1)$$, $$(2,6,2)$$
    Distance $$=\sqrt { \left( 2-2 \right) ^{ 2 }+\left( 3-6 \right) ^{ 2 }+\left( -1-2 \right) ^{ 2 } } $$
                    $$=\sqrt { 18 } $$
                    $$=3\sqrt { 2 }$$
  • Question 8
    1 / -0
    Find the distance between the points whose position vectors are given as follows
    $$4\hat i+3\hat j-6\hat k, -2\hat i+\hat j-\hat k$$
    Solution
    Distance Between two position vectors $$a\hat i+b\hat j+c\hat k$$ and $$x\hat i+y\hat j+z\hat k$$ is given by
    $$\sqrt { \left( a-x \right) ^{ 2 }+\left( b-y \right) ^{ 2 }+\left( c-z \right) ^{ 2 } } $$
    Given $$4\hat i+3\hat j-6\hat k$$, $$-2\hat i+\hat j-\hat k$$
    Distance $$=\sqrt { \left( 4+2 \right) ^{ 2 }+\left( 3-1 \right) ^{ 2 }+\left( -6+1 \right) ^{ 2 } } $$
                    $$=\sqrt { 65 } $$
  • Question 9
    1 / -0
    Find the point which divides the lines joining $$A(2,3,5)$$ and $$B(-6,5,8)$$ in the ratio $$2:3$$ externally
    Solution
    The given points are

    $$A(x_1,y_1,z_1)=A(2,3,5)$$

    $$B(x_2,y_2,z_2)=B(-6,5,8)$$

    Let $$P(x,y,z)$$ divides AB in the ratio

    $$m:n=2:3$$ externally

    Then by using section Formula,

    $$P(x,y,z)=\left(\dfrac{mx_2-nx_1}{m-n},\dfrac{my_2-ny_1}{m-n},\dfrac{mz_2-nz_1}{m-n}\right)$$

    $$P(x,y,z)=\left(\dfrac{2\times (-6)-3\times 2}{2-3},\dfrac{2\times 5-3\times 3}{2-3},\dfrac{2\times 8-3\times 5}{2-3}\right)$$

    $$P(x,y,z)=\left(\dfrac{-12-6}{-1},\dfrac{10-9}{-1},\dfrac{16-15}{-1}\right)$$

    $$P(x,y,z)=\left(\dfrac{-18}{-1},\dfrac{1}{-1},\dfrac{1}{-1}\right)$$

    $$P(x,y,z)=(18,-1,-1)$$
  • Question 10
    1 / -0
    The ordinate of the point which divides the lines joining the origin and the point $$(1,2)  $$ externally in the ratio of $$3:2$$ is
    Solution
    Co-ordinates of the required point will be
    $$\displaystyle y=\frac{m_{1}y_{2}-m_{2}y_{1}}{m_{1}-m_{2}}=\frac{3\times 2-2\times 0}{3-2}=6$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now