Self Studies

Introduction to Three Dimensional Geometry Test - 34

Result Self Studies

Introduction to Three Dimensional Geometry Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If R divides the line segment joining P(2, 3, 4) and Q (4, 5, 6) in the ratio -3 : 2, then the value of the parameter which represents R is
    Solution
    Given,

    $$P(2,3,4),Q(4,5,6)$$
     
    Given Ratio 

    $$=-\dfrac{3}{2}=\dfrac{m}{n}$$ 

    Let 

    $$R$$  be $$(x_3,y_3,z_3)$$

    $$R=\left ( \dfrac{mx_2+nx}{m+n},\dfrac{my_2+ny}{m+n}+\dfrac{mz_2+nz}{m+n}\right )$$

    $$=\left ( \dfrac{-3(4)+2(2)}{-3+2},\dfrac{-3(5)+2(3)}{-3+2}+\dfrac{-3(6)+2(4)}{-3+2}\right )$$

    $$=\left ( -\dfrac{8}{-1},-\dfrac{9}{-1},-\dfrac{10}{-1} \right )$$

    $$=(8,9,10)$$
  • Question 2
    1 / -0
    If (2, 3, -1) is the midpoint of AB where A=(-1,5,3) then B =
    Solution
    Given, $$(2,3,-1)$$ is mid point 
    then it will divide $$AB$$ in $$1:1$$
    let, $$B$$ be $$(x,y,z)$$
    so, according to section formula
    $$(\dfrac{1x+1(-1)}{1+1},\dfrac{1y+1(5)}{1+1},\dfrac{1z+1(3)}{1+1})=(2,3,-1)$$
    $$(\dfrac{x-1}{2},\dfrac{y+5}{2},\dfrac{z+3}{2})=(2,3,-1)$$
    $$\implies{\dfrac{x-1}{2}=2}$$
    $$\implies{x-1=4}$$
    $$\implies{x=5}$$
    Also,$$\dfrac{y+5}{2}=3$$
    $$\implies{y+5=6}$$
    $$\implies{y=6-5=1}$$
    Also,$$\dfrac{z+3}{2}=-1$$
    $$\implies{z+3=-2}$$
    $$\implies{z=-2-3=-5}$$
    hence,$$B=(5,1,-5)$$

  • Question 3
    1 / -0
    The coordinates of the point where the line through $$(3, -4, -5)$$ and $$(2, -3, 1)$$ crosses the plane passing through three points $$(2, 2, 1),(3, 0, 1)$$ and $$(4, -1, 0)$$ is
    Solution

  • Question 4
    1 / -0
    Locate the point $$(3, 2, -1)$$ in $$3\text{D}$$ octant.
  • Question 5
    1 / -0
    If the distance of the point P(4, 3, 5) from the Y-axis is $$\lambda $$, then the value of $${ 7\lambda  }^{ 2 }$$ is 
    Solution

    $$\Rightarrow$$  $$A=(x_1,y_1,z_1)=(0,3,0)$$ and $$P=(x_2,y_2,z_2)=(4,3,5)$$
    Here, $$PA=\lambda$$
    $$\Rightarrow$$  $$AP(\lambda)=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$$

                        $$=\sqrt{(4-0)^2+(3-3)^2+(5-0)^2}$$

                        $$=\sqrt{16+0+25}$$

                        $$=\sqrt{41}$$

    $$\Rightarrow$$  $$7\lambda^2=7(\sqrt{41})^2$$
                  $$=7\times 41$$
                  $$=287$$

  • Question 6
    1 / -0
    $$30$$ consider at three dimensional figure represented by $$xyz^2=2$$, then its minimum distance from origin is?
    Solution

  • Question 7
    1 / -0
    The distance of P(2,-3) from the x-axis is......
  • Question 8
    1 / -0
    If the distance between the points (2,-3) and (5,b) is 5 , then b=.........
    Solution

  • Question 9
    1 / -0
    Find the centroid of a triangle, mid-points of whose sides are $$(!,2,-3),(3,0,1)$$ and $$(-1,1,-4)$$
    Solution

  • Question 10
    1 / -0
    The point in the $$xy -$$ plane which is equidistant from $$(2, 0, 3), (0, 3, 2)$$ and $$(0,0, 1)$$ is 
    Solution
    Let the points are $$A(2,0,3),B(0,3,2)$$ and $$D(0,0,1)$$
    We know that Z-coordinate of every point an xy-plane is zero so let $$p(x,y,0) $$ be a point on xy-plane such that $$PA=PB=PC$$
    Now, $$PA=PB$$
    $$\Rightarrow PA^2=PB^2$$
    $$\Rightarrow (x-2)^2+(y-0)^2+(0-3)^2=(x-0)^2+(y-3)^2+(0-2)$$
    $$\Rightarrow 4x-6y=0\Rightarrow 2x-3y=0$$......(i)
    and , $$PB=PC$$
    $$\Rightarrow PB^2=PC^2$$
    $$\Rightarrow (x-0)^2+(y-3)^2(0-2)^2=(x-0)^2+(y-0)^2+(0-1)^2$$
    $$\Rightarrow -6y+12=0$$
    $$\Rightarrow y=2$$......(ii)
    Putting $$y=2$$ in equation (i), we get $$x=3$$
    Hence, the required point is $$(3,2,0)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now