Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    Let $$f$$ be a differentiable function such that $$f'(x) = 7- \dfrac{3}{4}\dfrac{f(x)}{x}, (x > 0)$$ and $$f(1) \neq 4$$.
    Then $$\underset{x\to 0^+}{\lim} xf \left(\dfrac{1}{x}\right) $$:

  • Question 2
    1 / -0

    $$\underset{x\to 0}{\lim} \left(\dfrac{3x^2+2}{7x^2+2}\right)^{1/x^2}$$ is equal to:

  • Question 3
    1 / -0

    $$\lim _{ { x\rightarrow \pi /4 } } \dfrac { \cot ^{ { 3 } } x-\tan  x }{ \cos  (x+\pi /4) } $$  is

  • Question 4
    1 / -0

    If $$f(x) = \begin{vmatrix} \cos x& x & 1\\ 2\sin x & x^{2} & 2x\ \\ \tan x & x & 1\end{vmatrix}$$, then $$\displaystyle \lim_{x\rightarrow 0} \dfrac {f'(x)}{x}$$.

  • Question 5
    1 / -0

    $$\displaystyle \frac{d}{dx}\left(\frac{\sin x}{x}\right)$$

  • Question 6
    1 / -0

    If $$x$$ is very large, then $$\dfrac {2x}{1+x}$$ is

  • Question 7
    1 / -0

    If $$y=2  \sin  x -3x^4 + 8$$, then $$\dfrac{dy}{dx}$$ is

  • Question 8
    1 / -0

    $$\displaystyle \lim_{x\rightarrow \infty} \sin x$$ equals

  • Question 9
    1 / -0

    Derivative of $$2\tan x - 7\sec x$$ with respect to $$x$$ is:

  • Question 10
    1 / -0

    $$\displaystyle \lim _{ x\rightarrow 0 }{ \cfrac { x{ e }^{ x }-\sin { x }  }{ x }  } $$ is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now