Self Studies

Limits and Derivatives Test - 12

Result Self Studies

Limits and Derivatives Test - 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Evaluate $$\displaystyle \lim_{n\rightarrow \infty} \dfrac{1+2+3+...+n}{n^2}$$
    Solution
    $$\displaystyle \lim_{n\rightarrow \infty} \dfrac{1+2+3+...+n}{n^2}$$

    $$\displaystyle =\lim_{n\rightarrow \infty} \dfrac{1}{n^2} \times \dfrac{n(n+1)}{2}$$

    $$\displaystyle =\lim_{n\rightarrow \infty} \dfrac{1}{2}(1+\dfrac{1}{n})=\dfrac{1}{2}$$
  • Question 2
    1 / -0
    If $$y=x^2\sin \dfrac{1}{x}$$ then $$\dfrac{dy}{dx}=?$$
    Solution

  • Question 3
    1 / -0
    If $$(x+y)=\sin (x+y)$$ then $$\dfrac{dy}{dx}=?$$
    Solution

  • Question 4
    1 / -0
    If $$x=a\cos^{2}\theta, y=b\sin^{2}\theta$$ then $$\dfrac{dy}{dx}=?$$
    Solution

  • Question 5
    1 / -0
    If $$y=e^{\sin \sqrt x}$$ then $$\dfrac{dy}{dx}=?$$
    Solution

  • Question 6
    1 / -0
    If $$y=\cos^2 x^3$$ then $$\dfrac{dy}{dx}=?$$
    Solution

  • Question 7
    1 / -0
    lf $$ \displaystyle \lim _{ x\rightarrow 0 } \left(\displaystyle  \frac { \cos  4x+a\cos  2x+b }{ x^{ 4 } }  \right) $$ is finite then the value of $$a,b$$ respectively are
    Solution
    $$\lim _{ x\rightarrow 0 } \left(\displaystyle  \frac { \cos  4x+a\cos  2x+b }{ x^{ 4 } }  \right) $$

    As $${ x\rightarrow 0 }$$, denominator tends to 0, so the numerator also tends to 0.

    $$\Rightarrow \lim _{ x\rightarrow 0 } \cos  4x+a\cos  2x+b=0$$
    at $$x = 0 \Rightarrow \cos 4x = 1, \cos 2x = 1$$
    $$\Rightarrow 1+a+b=0$$
    $$\Rightarrow a+b=-1$$
    Now, put $$a = -4 $$
    $$ \Rightarrow b = 3$$
    Option C satisfies above equation.
  • Question 8
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 1}(1-x)\tan(\displaystyle \frac{\pi x}{2})=$$
    Solution
    $$\displaystyle \lim_{x\rightarrow 1}(1-x)\tan(\displaystyle \dfrac{\pi x}{2})$$
    $$=\lim _{ x\rightarrow 1 } \displaystyle\dfrac { 1-x }{ \cot { (\dfrac { \pi x }{ 2 }  } ) } $$
    It is of the form $$\displaystyle \dfrac{0}{0}$$, so applying L-Hospital's rule 
    $$=\lim _{ x\rightarrow 1 } \displaystyle\dfrac { -1 }{ -\dfrac { \pi  }{ 2 } \csc ^{ 2 }{ (\dfrac { \pi x }{ 2 } ) }  } $$
    $$=\displaystyle \dfrac{2}{\pi}$$
  • Question 9
    1 / -0
    The value of $$\displaystyle \lim _{ \alpha \rightarrow \beta  }{ \left[ \frac { \sin ^{ 2 }{ \alpha  } -\sin ^{ 2 }{ \beta  }  }{ { \alpha  }^{ 2 }-{ \beta  }^{ 2 } }  \right]  } $$ is:
    Solution
    $$\displaystyle \lim _{ \alpha \rightarrow \beta  }{ \left[ \frac { \sin ^{ 2 }{ \alpha  } -\sin ^{ 2 }{ \beta  }  }{ { \alpha  }^{ 2 }-{ \beta  }^{ 2 } }  \right]  } =\lim _{ \alpha \rightarrow \beta  }{ \left[ \frac { \sin { \left( \alpha -\beta  \right)  } \sin { \left( \alpha +\beta  \right)  }  }{ \left( \alpha -\beta  \right) \left( \alpha +\beta  \right)  }  \right]  } $$

    $$\displaystyle =\lim _{ \alpha \rightarrow \beta  }{ \left[ \frac { \sin { \left( \alpha -\beta  \right)  }  }{ \left( \alpha -\beta  \right)  }  \right]  } \times \lim _{ \alpha \rightarrow \beta  }{ \left[ \frac { \sin { \left( \alpha +\beta  \right)  }  }{ \left( \alpha +\beta  \right)  }  \right]  } $$

    $$\displaystyle =\lim _{ \alpha -\beta \rightarrow 0 }{ \left[ \frac { \sin { \left( \alpha -\beta  \right)  }  }{ \left( \alpha -\beta  \right)  }  \right]  } .\left( \frac { \sin { 2\beta  }  }{ 2\beta  }  \right) $$ ....... $$[\because \alpha \rightarrow \beta \implies \alpha - \beta \rightarrow 0]$$

    $$\displaystyle =1.\frac { \sin { 2\beta  }  }{ 2\beta  }$$ ..... $$[\because \displaystyle \lim_{x\rightarrow 0} \dfrac{\sin x}{x}=1]$$
    $$=\dfrac { \sin { 2\beta  }  }{ 2\beta  } $$   
  • Question 10
    1 / -0
    Evaluate: $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{\sec 4x-\sec 2x}{\sec 3x-\sec x}$$
    Solution
    Given,

    $$\lim_{x\rightarrow 0}\dfrac{\sec 4x-\sec 2x}{\sec 3x-\sec x}$$

    $$\sec x=\dfrac{1}{\cos x}$$

    $$=\displaystyle\lim_{x\rightarrow 0}\dfrac{\dfrac{1}{\cos 4x}-\dfrac{1}{\cos 2x}}{\dfrac{1}{\cos 3x}-\dfrac{1}{\cos x}}$$

    $$=\lim_{x\rightarrow 0}\dfrac{\cos 2x-\cos 4x}{\cos x-\cos 3x}\dfrac{\cos 3x\cos x}{\cos 4x\cos 2x}$$

    $$=\lim_{x\rightarrow 0}\dfrac{-2\sin 3x \sin (-x)}{-2\sin (2x)\sin (-x)}\dfrac{\cos 3x\cos x}{\cos 4x\cos 2x}$$

    $$=\lim_{x\rightarrow 0}\dfrac{\dfrac{\sin 3x}{3x}\times 3x}{\dfrac{\sin 2x}{2x}\times 2x}\dfrac{\cos 3x\cos x}{\cos 4x\cos 2x}$$

    as $$\cos 0=1$$ and $$\lim_{x\rightarrow 0}\dfrac{\sin x}{x}=1$$

    $$=\dfrac{3x}{2x}=\dfrac{3}{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now