Self Studies

Limits and Derivatives Test - 14

Result Self Studies

Limits and Derivatives Test - 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{3\sin x-\sin 3x}{x^{3}}$$=
    Solution
    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{3\sin x-\sin 3x}{x^{3}}$$
    $$\displaystyle =\lim _{ x\rightarrow 0 } \frac { 4\sin ^{ 3 }{ x }  }{ x^{ 3 } }$$
    $$\displaystyle =\lim _{ x\rightarrow 0 } \frac { 4\sin ^{ 3 }{ (\frac { \pi  }{ 180 } x) }  }{ x^{ 3 } } $$
    $$\displaystyle ={ (\frac { \pi  }{ 180 } ) }^{ 3 }\lim _{ x\rightarrow 0 } \frac { 4\sin ^{ 3 }{ (\frac { \pi  }{ 180 } x) }  }{ x^{ 3 }{ (\frac { \pi  }{ 180 } ) }^{ 3 } } $$
    $$\displaystyle =4{ (\frac { \pi  }{ 180 } ) }^{ 3 }$$
  • Question 2
    1 / -0
    Solve:
    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{3\tan x-\tan 3x}{2x^{3}}$$
    Solution
    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \dfrac{3\tan x-\tan 3x}{2x^{3}}$$

    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \dfrac{3(x+\dfrac{x^3}{3}+\dfrac{2x^5}{15}+......)-(3x+\dfrac{(3x)^3}{3}+\dfrac{2(3x)^5}{15}+....)}{2x^{3}}=\dfrac{1-9}{2}=-4$$
  • Question 3
    1 / -0

    $$\displaystyle \lim_{x\rightarrow \dfrac{\pi }{2}}\displaystyle \dfrac{(\dfrac{\pi}{2}-x)\sec x}{cosecx}$$=
    Solution
    $$\displaystyle \lim _{ x\rightarrow \dfrac { \pi  }{ 2 }  } \dfrac { (\dfrac { \pi  }{ 2 } -x)\sec  x }{ \csc { x }  } $$

    $$\displaystyle=\lim _{ h\rightarrow 0 } \dfrac { (\dfrac { \pi  }{ 2 } -\dfrac { \pi  }{ 2 } +h)\sec { (\dfrac { \pi  }{ 2 } -h) }  }{ \csc { (\dfrac { \pi  }{ 2 } -h } ) }$$

    $$\displaystyle =\lim _{ h\rightarrow 0 } \dfrac { h\csc { h }  }{ \sec { h }  } $$

    $$\displaystyle =\lim _{ h\rightarrow 0 } \dfrac { h\cos { h }  }{ \sin { h }  } =1$$
  • Question 4
    1 / -0
    $$\displaystyle \lim_{x\rightarrow 0}(\frac{\sin x-x}{x})(\sin\frac{1}{x})$$ is:
    Solution
    $$sin x = x -\dfrac{x^{3}}{3!}+\dfrac{x^{5}}{5!}....(1)$$
    $$sin\ x-x =-\dfrac{x^{3}}{3!}+\dfrac{x^{5}}{5!}-\dfrac{x^{7}}{7!}$$
    $$\dfrac{sin\ x-x}{x} =-\dfrac{x^{2}}{3!}+\dfrac{x^{4}}{5!}-\dfrac{x^{6}}{7!}....=0\ (as\ x\ found\ to\ 0)$$
    sin$$(\dfrac{1}{x})$$ is an oscillatory function means same finite no.
    $$0\times finite\ no.=0$$
  • Question 5
    1 / -0

    $$\displaystyle \lim_{x\rightarrow \frac{\pi }{4}}\displaystyle \frac{\cos x-\sin x}{(\frac{\pi}{4}-x)(\cos x+\sin x)}$$=
    Solution
    $$\displaystyle \lim_{x\rightarrow \frac{\pi }{4}}\displaystyle \frac{\cos x-\sin x}{(\frac{\pi}{4}-x)(\cos x+\sin x)}$$
    $$=\displaystyle \lim_{x\rightarrow \frac{\pi }{4}}\displaystyle \frac{1-\tan x}{(\frac{\pi}{4}-x)(1+\tan x)}$$.................(dividing the num and deno by cosx)
    $$=\displaystyle \lim_{x\rightarrow \frac{\pi }{4}}\displaystyle \frac{\tan\left(\frac{\pi}{4}-x\right) }{(\frac{\pi}{4}-x)} = \lim_{h\to 0}\frac{\tan h}{h} = 1$$
  • Question 6
    1 / -0

    $$\displaystyle \lim_{x\rightarrow \dfrac{\pi }{2}}\displaystyle \frac{1-\sin x}{(\pi-2x)^{2}}$$=
    Solution
    $$\displaystyle \lim_{x\rightarrow \dfrac{\pi }{2}}\displaystyle \frac{1-\sin x}{(\pi-2x)^{2}}$$
    $$\displaystyle  =\lim _{ h\rightarrow 0 } \dfrac { 1-\sin  (\dfrac { \pi  }{ 2 } -h) }{ (\pi -2(\dfrac { \pi  }{ 2 } -h))^{ 2 } } $$......(x-->h-pi/2)
    $$\displaystyle =\lim _{ h\rightarrow 0 } \dfrac { 1-\cos { h }  }{ 4h^{ 2 } }$$

    $$\displaystyle =\dfrac { 1 }{ 8 } $$
  • Question 7
    1 / -0
    $$\displaystyle \lim_{x\rightarrow \infty }\frac{x+\sin x}{x+ \cos x}=$$
    Solution
    $$\displaystyle \lim_{x\rightarrow \infty }\frac{x+\sin x}{x+ \cos x}$$

    $$=\displaystyle \lim_{x\rightarrow \infty }\frac{\displaystyle 1+\frac{\sin x}{x}}{\displaystyle 1+ \frac{\cos x}{x}}$$

    $$=\displaystyle \frac{\displaystyle 1+\frac{\text{Any finite number between -1 and 1}}{\infty}}{\displaystyle 1+ \frac{\text{Any finite number between -1 and 1}}{\infty}}=\frac{1+0}{1+0}=1$$
  • Question 8
    1 / -0

     lf $$\displaystyle { f }({ x })=\sqrt { \frac { { x }-\sin ^{ 2 }{ x }  }{ { x }+\cos { x }  }  } $$,then $$\displaystyle \lim _{ x\rightarrow \infty  } f(x)$$=
    Solution
    $$\displaystyle \lim _{ x\rightarrow \infty  } f(x)$$$$\displaystyle = \lim _{ x\rightarrow \infty  }\sqrt { \dfrac { { x }-\sin ^{ 2 }{ x }  }{ { x }+\cos { x }  }  }=\lim _{ x\rightarrow \infty  }\sqrt { \dfrac { 1-\dfrac{\sin^2x}{x}}{ 1+\dfrac{\cos x}{x} }}=\sqrt{\dfrac{1-0}{1-0}}=1$$
  • Question 9
    1 / -0
    lf $$ \mathrm{f}(\mathrm{x})=0$$ has a repeated root $$ \alpha$$, then another equation having $$\alpha$$ as root, is 
    Solution
    Repeated roots mean that the curve will touch the $$x$$-axis.
    The curve will have a convex or concave part at the repeated root $$\alpha$$ or a point of inflection.
    In any case $$f'(x)$$ will always be zero at the point of repeated root $$\alpha$$.

  • Question 10
    1 / -0
    $$\displaystyle \lim_{x\rightarrow \infty }x\displaystyle \cos\left(\frac{\pi}{8x}\right)\sin\left(\frac{\pi}{8x}\right)=$$
    Solution
    As $$ x \rightarrow \infty   ,   \cos \left (\dfrac{\pi}{8x}\right) \rightarrow 1 $$
    Looking at the rest of the part,
    $$\underset{ x \rightarrow  \infty}{\lim}   \dfrac{\pi}{8x} \rightarrow 0 $$
    $$\underset{ x \rightarrow  \infty}{\lim}      x.\sin (\dfrac{\pi}{8x}) $$
    $$=\underset{ x \rightarrow  \infty}{\lim}       \dfrac{\sin (\dfrac{\pi}{8x})}{\dfrac{1}{x}} $$
    We multiply and divide by $$ \dfrac{\pi}{8} $$
    $$=\underset{ x \rightarrow  \infty}{\lim}  ,     \dfrac{\sin \left (\dfrac{\pi}{8x}\right)}{\dfrac{\pi}{8x}} \times \dfrac{\pi}{8x} $$
    Now using the property of a limit,
    $$\underset{ y \rightarrow 0}{\lim}  ,   \dfrac{\sin y}{y} $$ $$= 1$$
    We get, applying the limit,
    $$= 1 \times $$ $$ \dfrac{\pi}{8} $$
    $$=$$ $$ \dfrac{\pi}{8} $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now