Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0


    $$\displaystyle \lim_{x\rightarrow \infty }(\sin\sqrt{x+1}-\sin\sqrt{x})=$$

  • Question 2
    1 / -0


     $$\displaystyle \lim_{x\rightarrow\infty}\frac{\sin^{4}x-\sin^{2}x+1}{\cos^{4}x-\cos^{2}x+1}$$ is equal to

  • Question 3
    1 / -0


    $$\displaystyle \lim_{x\rightarrow \displaystyle \frac{\pi }{2}}\displaystyle \frac{1-\sin\theta}{\cos\theta\left(\dfrac{\pi}{2}-{\theta}\right)}=$$

  • Question 4
    1 / -0


    $$\displaystyle \lim_{x\rightarrow \infty }2^{-x}\sin(2^{x})$$

  • Question 5
    1 / -0

    Evaluate: $$\displaystyle \underset{x\rightarrow 0}{\lim}\ \ \frac{\sin3x^{2}}{\cos(2x^{2}-x)}$$

  • Question 6
    1 / -0

    $$\displaystyle \lim_{x\rightarrow \infty }\frac{2x+7\sin x}{4x+3\cos x}=$$

  • Question 7
    1 / -0


    $$\displaystyle Lt_{x\rightarrow 0^+}(sinx)^{\tan x}=$$

  • Question 8
    1 / -0

    The value of $$\displaystyle \lim _{ x\rightarrow 0 }{ \frac { \sin { \left( \pi \cos ^{ 2 }{ x }  \right)  }  }{ { x }^{ 2 } }  } $$ is

  • Question 9
    1 / -0

    $$Lt_{x \rightarrow 0}\dfrac{\sin 2x+a\sin x}{x^{3}}$$ exists and finite then $$\mathrm{a}=$$

  • Question 10
    1 / -0


    $$\displaystyle \lim_{\mathrm{x}\rightarrow \pi }(1- 4 \tan \mathrm{x} )^{\mathrm{c}\mathrm{o}\mathrm{t}\mathrm{x}}=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now