Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    lf $$f(x)=\displaystyle \frac{x}{\sqrt{1-x^{2}}},g(x)=\frac{x}{\sqrt{1+x^{2}}}$$, then $$\displaystyle \frac{d}{dx}(fog (x))=$$

  • Question 2
    1 / -0

    The integer $$n$$ for which $$\displaystyle \lim_{x\rightarrow 0}\frac{(\cos x-1)(\cos x-e^{x})}{x^{n}}$$ is finite non zero number is

  • Question 3
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 0}\frac{1}{x}\cos ^{ -1 }{ \left( \frac { 1-x^{ 2 } }{ 1+x^{ 2 } }  \right)  } =$$

  • Question 4
    1 / -0

    The right-hand limit of the function $$\sec{x}$$ at $$\displaystyle x=-\frac { \pi  }{ 2 } $$ is

  • Question 5
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 1}(2-x)^{\displaystyle \tan( \frac{\pi x}{2})}=$$

  • Question 6
    1 / -0

    If $$f(x)=(ax+b)\cos x + (cx+d)\sin x$$ and $$f^{'}(x)=x \cos x$$, for all values of $$x\in R$$, then $$a,b,c,d$$ are given by

  • Question 7
    1 / -0

    If $$\displaystyle f(x) = \sqrt {\frac{{x - \sin x}}{{x + {{\cos }^2}x}}} $$ then $$\mathop {\lim }\limits_{x \to \infty } f(x)$$  is

  • Question 8
    1 / -0

    $$\displaystyle\lim_{x \rightarrow \infty}(1^x + 2^x + 3^x+.........+n^x)^{1/x}$$ is

  • Question 9
    1 / -0

    Assertion (A): $$\mathrm{f}(\mathrm{x})=\sin(\pi[x])$$ is differentiable every where $$[\ ]$$ is greatest integer function


    Reason (R): lf $$\mathrm{x}=\mathrm{n}\pi\Rightarrow $$ $$\sin x$$ $$=0\ \forall \ \mathrm{n}\in \mathrm{Z}$$ then

  • Question 10
    1 / -0

    $$\displaystyle \lim_{x\to1}{\displaystyle \frac{1-x^2}{\sin 2\pi x}}$$ is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now