Self Studies

Limits and Derivatives Test - 16

Result Self Studies

Limits and Derivatives Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    lf $$f(x)=\displaystyle \frac{x}{\sqrt{1-x^{2}}},g(x)=\frac{x}{\sqrt{1+x^{2}}}$$, then $$\displaystyle \frac{d}{dx}(fog (x))=$$
    Solution
    $$\displaystyle f(g(x)) = \frac{g(x)}{\sqrt{1-(g(x))^2}}$$ provided $$g(x) \neq 1$$

    $$\displaystyle \quad = \frac{\dfrac{x}{\sqrt{1+x^2}}}{\sqrt{1-\dfrac{x^2}{1+x^2}}} =x$$

    $$\therefore \dfrac{d}{dx}(fog(x)) = \dfrac{d}{dx}(x) =1$$
  • Question 2
    1 / -0
    The integer $$n$$ for which $$\displaystyle \lim_{x\rightarrow 0}\frac{(\cos x-1)(\cos x-e^{x})}{x^{n}}$$ is finite non zero number is
    Solution
    $$\displaystyle \lim _{ x\rightarrow 0 }{ \cfrac { (\cos { x } -1)\left( \cos { x } -{ e }^{ x } \right)  }{ { x }^{ n } }  } =\displaystyle \lim _{ x\rightarrow 0 }{ \left[ \cfrac { \left( \cos { x } -1 \right)  }{ { x }^{ 2 } }  \right]  } \times \cfrac { { \cos { x } -{ e }^{ x } } }{ { x }^{ n-2 } } $$
    $$=-\cfrac { 1 }{ 2 } \displaystyle \lim _{ x\rightarrow 0 }{ \cfrac { { \cos { x } -{ e }^{ x } } }{ { x }^{ n-2 } }  } =\cfrac { 0 }{ 0 } $$ form

    $$=-\cfrac { 1 }{ 2 } \displaystyle \lim _{ x\rightarrow 0 }{ \cfrac { { -\sin { x } -{ e }^{ x } } }{ (n-2){ x }^{ n-3 } }  } =\cfrac { 1 }{ 2(n-2) } \displaystyle \lim _{ x\rightarrow 0 }{ \cfrac { { 1 } }{ { x }^{ n-3 } }  } $$

    $$\therefore$$ for the above limit to be finite $$n-3=0$$
    $$\Rightarrow n=3$$
  • Question 3
    1 / -0
    $$\displaystyle \lim_{x\rightarrow 0}\frac{1}{x}\cos ^{ -1 }{ \left( \frac { 1-x^{ 2 } }{ 1+x^{ 2 } }  \right)  } =$$
    Solution
    $$\lim_{x\rightarrow 0^{-}} \dfrac{-2}{\dfrac{2x}{(1+x^{2})}}\dfrac{sin^{-1}}{(1+x^{2})}\dfrac{(2x)}{1+x^{2}}=-2$$

    $$\lim_{x\rightarrow 0^{+}}   \dfrac{2}{(\dfrac{2x}{1+x^{2}})(1+x^{2})}  sin^{-1}(\dfrac{2x}{1+x^{2}})=2$$


    $$L.H.S\neq R.H.S$$
  • Question 4
    1 / -0
    The right-hand limit of the function $$\sec{x}$$ at $$\displaystyle x=-\frac { \pi  }{ 2 } $$ is
    Solution
    Function $$\displaystyle f\left( x \right)=\sec { x } $$ and point $$\displaystyle x=-\left( \frac { \pi  }{ 2 }  \right) $$.
    We know that right$$-$$hand limit of the function $$f(x)$$ at $$x=-\left( \frac { \pi  }{ 2 }  \right) $$ is $$\displaystyle \lim _{ x\rightarrow { \left[ -\left( \pi /2 \right)  \right]  }^{ + } }{ f\left( x \right) } =\lim _{ x\rightarrow { \left[ -\left( \pi /2 \right)  \right]  } }{ \sec { x }  } .$$
    Substituting $$\displaystyle x=h+\left( -\frac { \pi  }{ 2 }  \right) $$ and $$h\rightarrow 0,$$ we get
    $$\displaystyle \lim _{ h\rightarrow 0 }{ \sec { \left[ h+\left( -\frac { \pi  }{ 2 }  \right)  \right]  } = } \lim _{ h\rightarrow 0 }{ \sec { \left( \frac { \pi  }{ 2 } -h \right)  }  } =\lim _{ h\rightarrow 0 }{ \csc { h }  } =\csc { 0 } =\infty $$
    $$\displaystyle \left[ \because \sec { \left( -\theta  \right) = } \sec { \theta  }  \right] $$
  • Question 5
    1 / -0
    $$\displaystyle \lim_{x\rightarrow 1}(2-x)^{\displaystyle \tan( \frac{\pi x}{2})}=$$
    Solution
    Let $$k=\lim _{ x\rightarrow 1 } (2-x)^{ \tan  \left(\dfrac { \pi x }{ 2 } \right) }$$
    $$\log { k } =\lim _{ x\rightarrow 1 } tan\left( \dfrac { \pi x }{ 2 }  \right) \log { \left( 2-x \right)  } $$
    $$\displaystyle k={ e }^{ \lim _{ x\rightarrow 1 } tan\left( \displaystyle\dfrac { \pi x }{ 2 }  \right) \log { \left( 2-x \right)  }  }$$
    $$\displaystyle k={ e }^{ \lim _{ x\rightarrow 1 } \displaystyle \dfrac { \log { \left( 2-x \right)  }  }{ \cot { \left( \dfrac { \pi x }{ 2 }  \right)  }  }  }$$
    $$k={ e }^{ \lim _{ x\rightarrow 1 } \displaystyle \dfrac { -1 }{ -(2-x)\csc ^{ 2 }{ \left( \dfrac { \pi x }{ 2 }  \right) \left( \dfrac { \pi  }{ 2 }  \right)  }  }  }$$
    $$\Rightarrow k={e}^{\displaystyle\dfrac{2}{\pi}}$$
  • Question 6
    1 / -0
    If $$f(x)=(ax+b)\cos x + (cx+d)\sin x$$ and $$f^{'}(x)=x \cos x$$, for all values of $$x\in R$$, then $$a,b,c,d$$ are given by
    Solution
    Given, $$f(x) = (ax+b)\cos x + (cx+d)\sin x$$
    Thus $$f'(x) = (ax+b)(-\sin x) + a\cos x + c\sin x + (cx+d)\cos x$$
    $$= (-ax-b+c)\sin x + (a+cx+d)\cos x$$
    Also given, $$f'(x) = x\cos x$$
    Comparing the coefficients, we get
    $$a =0, b=1, c =1, d=0$$
  • Question 7
    1 / -0
    If $$\displaystyle f(x) = \sqrt {\frac{{x - \sin x}}{{x + {{\cos }^2}x}}} $$ then $$\mathop {\lim }\limits_{x \to \infty } f(x)$$  is
    Solution
    $$\displaystyle f(x) =\sqrt{\frac{x-sin  x}{x+ cos^2x}} =\sqrt{\frac{1- \frac{sin  x}{x}}{1+ \frac{cos^2x}{x}}}$$
    $$\lim_{x \rightarrow \infty}f(x)=1$$               $$\displaystyle \lim_{x \rightarrow \infty} \frac{sin  x}{x}=0$$
                                                    $$\displaystyle \lim_{x \rightarrow  \infty} \frac{cos^2 x}{x}=0$$
  • Question 8
    1 / -0
    $$\displaystyle\lim_{x \rightarrow \infty}(1^x + 2^x + 3^x+.........+n^x)^{1/x}$$ is
    Solution
    Consider that $$y=\displaystyle\lim_{x\to\infty}(1^x+2^x+3^x+.........+n^x)^{1/x}$$
    take natural logarithm on both sides, we have
    $$\ln y=\displaystyle\lim_{x\to\infty}\ln\left[(1^x+2^x+3^x+.........+n^x)^{1/x}\right]$$
    $$\therefore \ln y=\displaystyle\lim_{x\to\infty}\dfrac{\ln (1^x+2^x+3^x+.........+n^x)}{x}$$
    RHS has $$\dfrac{\infty}{\infty}$$ form. Hence, use L'hospital's rule
    $$\therefore \ln y=\displaystyle\lim_{x\to\infty}\dfrac{1^x\ln 1+2^x\ln 2+3^x\ln 3+.........+n^x\ln n }{1^x+2^x+3^x+.........+n^x}$$
    On approximating this form, we have
    $$\ln y=\displaystyle\lim_{x\to\infty}\dfrac{n^x\ln n }{n^x}$$
    $$\ln y=\ln n$$
    $$\therefore y=n$$
    Hence, this is required answer.
  • Question 9
    1 / -0
    Assertion (A): $$\mathrm{f}(\mathrm{x})=\sin(\pi[x])$$ is differentiable every where $$[\ ]$$ is greatest integer function

    Reason (R): lf $$\mathrm{x}=\mathrm{n}\pi\Rightarrow $$ $$\sin x$$ $$=0\ \forall \ \mathrm{n}\in \mathrm{Z}$$ then
    Solution
    $$ [ x ]$$is an integer$$\  \forall \ x\epsilon R$$
    Hence, sin$$(\pi  [ x ])=0 \   \forall\  x\epsilon \ R$$
    Hence, $$f(x) =0 \ \forall \ x\epsilon\  R$$
    Hence, $$f(x)$$ is differentiable everywhere.

    The Assertion is correct and the Reason provides the correct explanation for it. 
  • Question 10
    1 / -0
    $$\displaystyle \lim_{x\to1}{\displaystyle \frac{1-x^2}{\sin 2\pi x}}$$ is equal to
    Solution

    $$\displaystyle\lim_{x\to1}\frac{1-x^2}{\sin2\pi
    x}= -\displaystyle \lim_{x\to1}\frac{2\pi(1-x)(1+x)}{-2\pi\sin(2\pi-2\pi x)} $$

    $$=\displaystyle \lim_{x \to 1}\left( \frac{(2\pi-2\pi x}{\sin(2\pi-2\pi x)}\right).\frac{1+x}{-2\pi}=-\frac{1}{\pi}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now