Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0


    lf $$[\mathrm{x}]$$ denotes the greatest integer contained in $$\mathrm{x},$$ then for 4 $$<\mathrm{x}<5,\ \displaystyle \frac{d}{dx}\{[x]\}=$$

  • Question 2
    1 / -0

    If $$y=3  \cos x$$, then $$\dfrac{dy}{dx}$$ at $$x=\dfrac{\pi}{2}$$ is

  • Question 3
    1 / -0


    lf $$f(x)=\left\{\begin{matrix}\displaystyle \frac{1-\cos x}{x} &x\neq 0 \\ 0 & x=0\end{matrix}\right.$$,  then $$f^{'}(0)=$$

  • Question 4
    1 / -0

    If $$\displaystyle \lim_{x\to0}{\displaystyle \frac{x^n - \sin^nx}{x - \sin^nx}}$$ is non-zero finite, then $$n$$ must be equal

  • Question 5
    1 / -0

    If $$y=x^{-\tfrac12}+\log_5x+\displaystyle \frac {\sin x}{\cos x}+2^x$$, then find $$\dfrac {dy}{dx}$$

  • Question 6
    1 / -0

    If $$\displaystyle y=5^{3-x^2}+(3-x^2)^5$$, then $$\displaystyle \frac{dy}{dx}=$$

  • Question 7
    1 / -0

    If $$y=\log_{3}x+3 \log_{e} x+2 \tan x$$, then $$\displaystyle \frac{dy}{dx}=$$

  • Question 8
    1 / -0

    Find the derivative of $$\sec^{-1}\left (\displaystyle \frac {x+1}{x-1}\right )+\sin^{-1}\left (\displaystyle \frac {x-1}{x+1}\right )$$

  • Question 9
    1 / -0

    If $$y=\log_{10}x+\log_x 10+\log_xx+\log_{10} 10$$, then $$\displaystyle \frac{dy}{dx}=$$

  • Question 10
    1 / -0

    If $$\displaystyle y=e^{x \log a}+e^{a \log x}+e^{a \log a}$$, then $$\displaystyle \frac{dy}{dx}=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now