Self Studies

Limits and Derivatives Test - 17

Result Self Studies

Limits and Derivatives Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    lf $$[\mathrm{x}]$$ denotes the greatest integer contained in $$\mathrm{x},$$ then for 4 $$<\mathrm{x}<5,\ \displaystyle \frac{d}{dx}\{[x]\}=$$
    Solution
    $$[\ ]$$ denote greatest integer function ,i.e $$[n+f]=n$$,
    where $$n=integer\ $$and $$f= fraction$$,
    If $$4<x<5$$ , then $$[x] =4 =$$ constant
    Hence $$\dfrac{d}{dx}\{[x]\} =\dfrac{d}{dx}(4)=0$$
  • Question 2
    1 / -0
    If $$y=3  \cos x$$, then $$\dfrac{dy}{dx}$$ at $$x=\dfrac{\pi}{2}$$ is
    Solution
    Given that $$y=3\cos x$$
    $$ \Rightarrow \dfrac { dy }{ dx } =-3\sin x$$ at $$ x=\dfrac { \pi  }{ 2 } $$
    $$\Rightarrow  \dfrac { dy }{ dx } =-\sin\dfrac { \pi  }{ 2 } $$
    $$ =-3$$
  • Question 3
    1 / -0

    lf $$f(x)=\left\{\begin{matrix}\displaystyle \frac{1-\cos x}{x} &x\neq 0 \\ 0 & x=0\end{matrix}\right.$$,  then $$f^{'}(0)=$$
    Solution
    Using fundamental theorem,
    $$\displaystyle f'(0) =\lim_{h\to 0}\frac{f(0+h)-f(0)}{h}$$

    $$=\displaystyle \lim_{h\to 0}\frac{\dfrac{1-\cos h}{h}-0}{h} $$

    $$=\displaystyle \lim_{h\to 0}\frac{1-\cos h}{h^2}$$

    $$=\displaystyle \lim_{h \rightarrow 0} \dfrac{1}{2}.\frac{\sin^2 \frac{h}{2}}{\frac{h^2}{4}}= \dfrac{1}{2}$$
  • Question 4
    1 / -0
    If $$\displaystyle \lim_{x\to0}{\displaystyle \frac{x^n - \sin^nx}{x - \sin^nx}}$$ is non-zero finite, then $$n$$ must be equal
    Solution
     $$\displaystyle \lim_{x\to0}{\displaystyle \frac{x^n - \sin^nx}{x - \sin^nx}}$$

    $$\mbox{For n = 0,we have }\displaystyle\lim_{x\to0}\displaystyle\frac{1-1}{x-1}=0$$

    $$\mbox{For n = 1,}\displaystyle\lim_{x\to0}\displaystyle\frac{x-\sin x}{x- \sin x}=1\\$$

    $$\mbox{For n = 2,}\displaystyle\lim_{x\to0}\displaystyle\frac{x^2-\sin^2x}{x-\sin^2x}=\displaystyle\lim_{x\to0}\displaystyle\frac{1-\displaystyle\frac{\sin^2x}{x^2}}{\displaystyle\frac{1}{x}-\displaystyle\frac{\sin^2x}{x^2}}.\\$$
    $$\mbox{This does not exist.}\\ $$

    $$\displaystyle { For\ \  n=3, }\lim _{ x\to 0 } \dfrac { x^{ 3 }-\sin ^{ 3 } x }{ x-\sin ^{ 3 } x } =\lim _{ x\to 0 } \dfrac { 1-\dfrac { \sin ^{ 3 } x }{ x^{ 3 } }  }{ \dfrac { 1 }{ x^{ 2 } } -\dfrac { \sin ^{ 3 } x }{ x^{ 3 } }  } $$
    For  $$n = 3$$, also given limit does not exist.
    Hence, $$n = 1$$
  • Question 5
    1 / -0
    If $$y=x^{-\tfrac12}+\log_5x+\displaystyle \frac {\sin x}{\cos x}+2^x$$, then find $$\dfrac {dy}{dx}$$
    Solution
    Here, we have function $$y=x^{-1/2}+\log _5x+\tan  x+2^x$$
    On differentiating w.r.t x, we get
    $$\dfrac {dy}{dx}=\dfrac {d}{dx}(x)^{-1/2}+\dfrac {d}{dx}(\log _5x)+\dfrac {d}{dx} \tan  x+\dfrac {d}{dx}(2^x)$$

    $$=-\dfrac {1}{2}(x)^{-1/2-1}+\dfrac {1}{x \log _e5}+\sec ^2x+2^x \log  2$$

    $$=-\dfrac {1}{2}x^{-3/2}+\dfrac {1}{x\log _e5}+\sec ^2x+2^x\log  2$$
  • Question 6
    1 / -0
    If $$\displaystyle y=5^{3-x^2}+(3-x^2)^5$$, then $$\displaystyle \frac{dy}{dx}=$$
    Solution
    $$\displaystyle \frac { d }{ dx } \left( 5^{ 3-x^{ 2 } }+(3-x^{ 2 })^{ 5 } \right) $$
    $$={ 5 }^{ 3-{ x }^{ 2 } }\log _{ e }{ 5\displaystyle \frac { d }{ dx } \left( 3-{ x }^{ 2 } \right) +5{ \left( 3-{ x }^{ 2 } \right)  }^{ 4 }\displaystyle \frac { d }{ dx } { \left( 3-{ x }^{ 2 } \right)  } } $$
    $$={ 5 }^{ 3-{ x }^{ 2 } }\log _{ e }{ 5\left( -2x \right)  } +5{ \left( 3-{ x }^{ 2 } \right)  }^{ 4 }\left( -2x \right) $$
    $$=-2x\left( { 5 }^{ 3-{ x }^{ 2 } }\log _{ e }{ 5+5\left( 3-{ x }^{ 2 } \right)  }  \right) $$
  • Question 7
    1 / -0
    If $$y=\log_{3}x+3 \log_{e} x+2 \tan x$$, then $$\displaystyle \frac{dy}{dx}=$$
    Solution
    $$\displaystyle \frac { d }{ dx } \left( \log _{ 3 }{ x } +3\log _{ e }{ x } +2\tan { x }  \right) $$

    $$=\displaystyle \frac { d }{ dx } \left( \displaystyle \frac { \log_e { x }  }{ \log { 3 }  } +3\log_e { x } +2\tan { x }  \right) $$

    $$=\displaystyle \frac { 1 }{ x\log _{ e }{ 3 }  } +\displaystyle \frac { 3 }{ x } +2\sec ^{ 2 }{ x } $$
  • Question 8
    1 / -0
    Find the derivative of $$\sec^{-1}\left (\displaystyle \frac {x+1}{x-1}\right )+\sin^{-1}\left (\displaystyle \frac {x-1}{x+1}\right )$$
    Solution
    Let $$y=\sec^{-1}\left (\displaystyle \frac {x+1}{x-1}\right )+\sin^{-1}\left (\displaystyle \frac {x-1}{x+1}\right )$$
    $$y=\cos ^{ -1 }{ \left( \displaystyle \frac { x-1 }{ x+1 }  \right) +\sin ^{ -1 }{ \left( \displaystyle \frac { x-1 }{ x+1 }  \right)  }  } =\displaystyle \frac { \pi  }{ 2 } $$
    $$\therefore \displaystyle \frac { dy }{ dx } =\displaystyle \frac { d }{ dx } \left(\displaystyle  \frac { \pi  }{ 2 }  \right) =0$$
    $$\because \sin ^{ -1 }{ \theta +\cos ^{ -1 }{ \theta  } =\displaystyle \frac { \pi  }{ 2 }  } $$
  • Question 9
    1 / -0
    If $$y=\log_{10}x+\log_x 10+\log_xx+\log_{10} 10$$, then $$\displaystyle \frac{dy}{dx}=$$
    Solution
    $$\displaystyle \dfrac { d }{ dx } \left( \log _{ 10 }{ x+\log _{ x }{ 10+\log _{ x }{ x+\log _{ 10 }{ 10 }  }  }  }  \right) $$
    $$=\displaystyle \dfrac { 1 }{ x\log _{ e }{ 10 }  } +\displaystyle \dfrac { \left( -\log _{ e }{ 10\left( \displaystyle \dfrac { 1 }{ x }  \right)  }  \right)  }{ { \left( \log_e { x }  \right)  }^{ 2 } } $$
    $$=\displaystyle \dfrac { 1 }{ x\log _{ e }{ 10 }  } -\displaystyle \dfrac { \log _{ e }{ 10 }  }{ x{ \left( \log_e { x }  \right)  }^{ 2 } } $$
  • Question 10
    1 / -0
    If $$\displaystyle y=e^{x \log a}+e^{a \log x}+e^{a \log a}$$, then $$\displaystyle \frac{dy}{dx}=$$
    Solution
    Let  $$y=\displaystyle e^{x log a}+e^{a log x}+e^{a log a}$$
    $$={ e }^{ \log _{ e }{ { a }^{ x } }  }+{ e }^{ \log _{ e }{ { x }^{ a } }  }+{ e }^{ \log _{ e }{ { a }^{ a } }  }$$
    $$={ a }^{ x }+{ x }^{ a }+{ a }^{ a }$$ ......... Since $${ e }^{ \log _{ e }{ x }  }=x$$
    $$\displaystyle \frac { dy }{ dx } =\displaystyle \frac { d }{ dx } \left( { a }^{ x }+{ x }^{ a }+{ a }^{ a } \right) $$
    $$={ a }^{ x }\log { a } +a.{ x }^{ a-1 }$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now