Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    If $$y=x^2+sin^{-1}x+log_ex$$, find $$\dfrac {dy}{dx}$$

  • Question 2
    1 / -0

    $$\displaystyle \lim_{x\to0}\left( x^{-3}\sin{3x} + ax^{-2} + b \right)$$ exists and is equal to 0, then

  • Question 3
    1 / -0

    If $$y=logx^3+3 sin^{-1}x+kx^2$$, then find $$\displaystyle \frac {dy}{dx}$$

  • Question 4
    1 / -0

    The value of $$\displaystyle\lim_{x\rightarrow\infty}{\frac{\cot^{-1}{(x^{-a}\log_a{x})}}{\sec^{-1}{a^x\log_x{a}}}}$$ for $$(a>1)$$ is equal to?

  • Question 5
    1 / -0

    The value of 
    $$\displaystyle \lim_{x \rightarrow \pi/6} \frac{2 \sin^2 x + \sin  x-1}{2 \sin^2 x - 3  \sin  x + 1} $$

  • Question 6
    1 / -0

    If $$y = sec^{-1}\left(\displaystyle\frac{\sqrt x + 1}{\sqrt x - 1}\right) + \sin^{-1}\left(\displaystyle\frac{\sqrt x - 1}{\sqrt x + 1}\right)$$, then $$\displaystyle\frac{dy}{dx}$$ equals

  • Question 7
    1 / -0

    If $$f'(x)=\sin x+\sin 4x\cdot \cos x$$, then $$f'\left (2x^2+\displaystyle \frac {\pi}{2}\right )$$ is

  • Question 8
    1 / -0

    If $$y=|\cos x|+|\sin x|$$, then $$\displaystyle \dfrac {dy}{dx}$$ at $$x=\dfrac {2\pi}{3}$$ is

  • Question 9
    1 / -0

    Directions For Questions

    If f: $$R\rightarrow R$$ and $$f(x)=g(x)+h(x)$$ where $$g(x)$$ is a polynomial and $$h(x)$$ is a continuous and differentiable bounded function on both sides, then $$f(x)$$ is one-one, we need to differentiate $$f(x)$$. If $$f'(x)$$ changes sign in domain of $$f$$, then $$f $$ is many-one else one-one.

    ...view full instructions

    $$f:R\rightarrow R$$ and $$\displaystyle f(x)=\frac {x(x^4+1)(x+1)+x^4+2}{x^2+x+1}$$, then $$f(x)$$ is

  • Question 10
    1 / -0

    Which one of the following statement is true?

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now