Self Studies

Limits and Derivatives Test - 18

Result Self Studies

Limits and Derivatives Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$y=x^2+sin^{-1}x+log_ex$$, find $$\dfrac {dy}{dx}$$
    Solution
    $$y=x^2+sin^{-1}+log_ex$$
    On differentiating, we get
    $$\dfrac {dy}{dx}=\dfrac {d}{dx}(x^2)+\dfrac {d}{dx}sin^{-1}x)+\dfrac {d}{dx}(log_ex)$$
    or $$\dfrac {dy}{dx}=2(x)^{2-1}+\dfrac {1}{\sqrt {1-x^2}}+\dfrac {d}{dx}(log_ex)$$
    $$\dfrac {dy}{dx}=2x+\dfrac {1}{\sqrt {1-x^2}}+\dfrac {1}{x}$$
  • Question 2
    1 / -0
    $$\displaystyle \lim_{x\to0}\left( x^{-3}\sin{3x} + ax^{-2} + b \right)$$ exists and is equal to 0, then
    Solution
    $$\displaystyle\lim_{x\to\infty}\displaystyle\frac{\sin3x}{x^3}+\displaystyle\frac{a}{x^2}+b

    = \lim_{x\to0}\displaystyle\frac{\sin3x+ax+bx^3}{x^3}$$

    $$=\displaystyle\lim_{x\to0}\displaystyle\frac{3\displaystyle\frac{\sin3x}{3x}+a+bx^2}{x^2}$$

    $$\mbox{For existence, }$$

    $$(3+a)=0 \mbox{ or } a=-3$$

    $$\therefore L=\displaystyle\lim_{x\to0}\displaystyle\frac{\sin3x-3x+bx^3}{x^3}$$

    $$\Rightarrow 27\displaystyle\lim_{t\to0}\displaystyle\frac{\sin t - t}{t^3}+b = 0 ........ (3x=t ) $$
    The left hand side reduces to $$\dfrac{0}{0}$$ form by substituting the limit
    Then, using L'Hospital's rule
    $$\Rightarrow 27\displaystyle\lim_{t\to0}\displaystyle\frac{\cos t - 1}{3t^2}+b = 0$$
    Again, applying L'Hospital's rule
    $$\Rightarrow 27\displaystyle\lim_{t\to0}\displaystyle\frac{-\sin t}{6t}+b = 0$$
    $$\Rightarrow -\displaystyle\frac{27}{6}+b=0  \mbox{ or } b=\frac{9}{2}$$
  • Question 3
    1 / -0
    If $$y=logx^3+3 sin^{-1}x+kx^2$$, then find $$\displaystyle \frac {dy}{dx}$$
    Solution
    Here, $$y=\log x^3+3 \sin^{-1} x+kx^2$$

    On differentiating we get

    $$\displaystyle \dfrac {dy}{dx}=\dfrac {d}{dx}[\log x^3]+\dfrac {d}{dx}[3 \sin^{-1}x]+\dfrac {d}{dx}[kx^2]$$

    $$=3\displaystyle \dfrac {d}{dx}[\log x]+3\dfrac {d}{dx}(\sin^{-1}x)+k\dfrac {d}{dx}(x^2)$$

    $$=3\cdot \displaystyle \dfrac {1}{x}+3\cdot \dfrac {1}{\sqrt {1-x^2}}+k(2x)$$
  • Question 4
    1 / -0
    The value of $$\displaystyle\lim_{x\rightarrow\infty}{\frac{\cot^{-1}{(x^{-a}\log_a{x})}}{\sec^{-1}{a^x\log_x{a}}}}$$ for $$(a>1)$$ is equal to?
    Solution
    $$\mathrm{L} \displaystyle = \lim_{x\rightarrow\infty}{\frac{\cot^{-1}{(x^{-a}\log_a{x})}}{\sec^{-1}{a^x\log_x{a}}}}$$

    $$\displaystyle = \lim_{x\rightarrow\infty}{\frac{\cot^{-1}{\displaystyle \frac{\log{x}}{\log a. x^a}}}{\sec^{-1}{\displaystyle \frac{a^x\log a}{\log x}}}}=\lim_{x\rightarrow\infty}{\frac{\cot^{-1}{\displaystyle \frac{1}{a\log a. x^a}}}{\sec^{-1}{\displaystyle \frac{a^x\log^2 a. x}{1}}}}=\frac{\cot^{-1}0}{\sec^{-1} \infty}=\frac{\pi/2}{\pi/2}=1$$
    Note: L-Hospital's rule has been used in step two in both numerator and denominator alone.
  • Question 5
    1 / -0
    The value of 
    $$\displaystyle \lim_{x \rightarrow \pi/6} \frac{2 \sin^2 x + \sin  x-1}{2 \sin^2 x - 3  \sin  x + 1} $$
    Solution
    We have
    $$\displaystyle \lim_{x \rightarrow \pi/6} \frac{2  sin^2 x + sin  x -1}{2  sin^2  x-3  sin  x  + 1}$$

    $$\displaystyle  = \lim_{x \rightarrow \pi/6} \frac{(2  sin  x - 1)(sin  x + 1)}{(2  sin  x - 1)(sin  x - 1)}$$

    $$\displaystyle  = \lim_{x \rightarrow \pi/6} \frac{sin  x + 1}{sin  x - 1} = - 3$$
  • Question 6
    1 / -0
    If $$y = sec^{-1}\left(\displaystyle\frac{\sqrt x + 1}{\sqrt x - 1}\right) + \sin^{-1}\left(\displaystyle\frac{\sqrt x - 1}{\sqrt x + 1}\right)$$, then $$\displaystyle\frac{dy}{dx}$$ equals
    Solution
    $$y = sec^{-1}\left(\displaystyle\frac{\sqrt x + 1}{\sqrt x - 1}\right) +

    \sin^{-1}\left(\displaystyle\frac{\sqrt x - 1}{\sqrt x + 1}\right)$$
    $$y=\cos ^{ -1 }{ \left(\displaystyle  \frac { \sqrt { x } -1 }{ \sqrt { x } +1 }  \right) +\sin ^{ -1 }{ \left(\displaystyle  \frac { \sqrt { x } -1 }{ \sqrt { x } +1 }  \right)  }  } =\displaystyle \frac { \pi  }{ 2 } $$ ............. $$\because \sin ^{ -1 }{ \theta +\cos ^{ -1 }{ \theta  } =\displaystyle \frac { \pi  }{ 2 }  } $$
    $$\therefore \displaystyle \frac { dy }{ dx } =\displaystyle \frac { d }{ dx } \left(\displaystyle  \frac { \pi  }{ 2 }  \right) =0$$
  • Question 7
    1 / -0
    If $$f'(x)=\sin x+\sin 4x\cdot \cos x$$, then $$f'\left (2x^2+\displaystyle \frac {\pi}{2}\right )$$ is
    Solution
    $$f'(x)=\sin x+\sin 4x\cdot \cos x$$
    $$f'\left (2x^2+\displaystyle \frac {\pi}{2}\right )$$=$$\displaystyle \frac { d }{ dx } \left( 2{ x }^{ 2 }+\displaystyle \frac { \pi  }{ 2 }  \right) \left[ \sin { \left( 2{ x }^{ 2 }+\displaystyle \frac { \pi  }{ 2 }  \right) +\sin { 4 } \left( 2{ x }^{ 2 }+\displaystyle \frac { \pi  }{ 2 }  \right) .\cos { \left( 2{ x }^{ 2 }+\displaystyle \frac { \pi  }{ 2 }  \right)  }  }  \right] $$
    $$=4x\left[ \cos { 2{ x }^{ 2 }-\sin { 8 } { x }^{ 2 }.\sin { 2{ x }^{ 2 } }  }  \right] $$
  • Question 8
    1 / -0
    If $$y=|\cos x|+|\sin x|$$, then $$\displaystyle \dfrac {dy}{dx}$$ at $$x=\dfrac {2\pi}{3}$$ is
    Solution
    $$\displaystyle \frac { dy }{ dx } =\displaystyle \frac { d }{ dx } \left( |cosx|+|sinx| \right) $$
    $$=-\sin { x } +\cos { x } $$ at $$x=\displaystyle \frac { 2\pi  }{ 3 }$$
    $$=\left| -\sin { \displaystyle \frac { 2\pi  }{ 3 }  }  \right| +\left| \cos { \displaystyle \frac { 2\pi  }{ 3 }  }  \right| $$
    $$=\displaystyle \frac { \sqrt { 3 }  }{ 2 } -\displaystyle \frac { 1 }{ 2 } $$
    $$=\displaystyle \frac { 1 }{ 2 } \left( \sqrt { 3 } -1 \right) $$
  • Question 9
    1 / -0

    Directions For Questions

    If f: $$R\rightarrow R$$ and $$f(x)=g(x)+h(x)$$ where $$g(x)$$ is a polynomial and $$h(x)$$ is a continuous and differentiable bounded function on both sides, then $$f(x)$$ is one-one, we need to differentiate $$f(x)$$. If $$f'(x)$$ changes sign in domain of $$f$$, then $$f $$ is many-one else one-one.

    ...view full instructions

    $$f:R\rightarrow R$$ and $$\displaystyle f(x)=\frac {x(x^4+1)(x+1)+x^4+2}{x^2+x+1}$$, then $$f(x)$$ is
    Solution
    $$\displaystyle f(x)=\frac {x(x^4+1)(x+1)+x^4+2}{x^2+x+1}$$
    $$\displaystyle \quad \quad =\frac {x(x^4+1)(x+1)+(x^4+1)+1}{x^2+x+1}$$
    $$\displaystyle \quad \quad =\frac {(x^4+1)(x^2+x+1)+1}{x^2+x+1}$$
    $$\displaystyle \quad \quad =(x^4+1)+\frac {1}{x^2+x+1}$$
    $$\displaystyle f'(x) =4x^3-\frac {2x+1}{(x^2+x+1)^2}=$$ not always positive or negative
    Thus, $$f$$ is many one. 
    Also range and co-domain of $$f$$ are not same,
    Hence is many-one into function
  • Question 10
    1 / -0
    Which one of the following statement is true?
    Solution
    The statements can be proved false by giving counter examples

    (1)  If $$\displaystyle \lim_{x\to c}f(x).g(x)$$ and $$\displaystyle \lim_{x\to c}f(x)$$ exist, then $$\displaystyle \lim_{x\to c}g(x)$$ exists
    Let $$g(x) = 1/x $$ and $$f(x) = 2x$$, with $$c = 0$$, 
    then $$\displaystyle \lim_{x\to c}f(x).g(x) =2 $$ 
    $$\displaystyle \lim_{x\to c}f(x) = 0 $$ ,but   $$\displaystyle \lim_{x\to c}g(x)$$  does not exist

    (2) Same example as (1)
    (4) Let $$g(x) =\dfrac{ x+ 1}{x} $$ and $$f(x) = \dfrac{x-1}{x} $$, with $$c = 0$$,
    then $$\displaystyle \lim_{x\to c}[f(x)+g(x)] =2$$
    • but  $$\displaystyle \lim_{x\to c}f(x) \ and \ g(x)$$ do not exist
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now