Self Studies

Limits and Derivatives Test - 19

Result Self Studies

Limits and Derivatives Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Suppose the function $$f(x)-f(2x)$$ has the derivative $$5$$ at $$x=1$$ and derivative $$7$$ at $$x=2$$.The derivative  of the function $$f(x)-f(4x)$$ at $$x=1$$, has the value equal to 
    Solution
    The derivative will be,$$f'(x)-2f'(2x)$$
    $$f'(x)-2f'(2x)|_{1}=5=f'(1)-2f'(2)...........(1)$$
    $$f'(x)-2f'(2x)|_{2}=7=f'(2)-2f'(4)$$
    Hence, $$ 14=2f'(2)-4f'(4)$$ ........................(2)
    Adding (1) and (2),
    $$19=2f'(2)-4f'(4)+f'(1)-2f'(2)$$
    $$\Rightarrow f'(1)-4f'(4)=19$$
  • Question 2
    1 / -0
    Which one of the following statements is true?
    Solution
    For  option  A and B,  take  $$f(x)=x$$ and $$g(x)=\dfrac { 1 }{ x }$$.
    Limit of $$g(x)$$  doesn't  exist  at  $$x=0$$, but for $$\displaystyle \lim _{ x\to 0} f(x).g(x)$$ and $$f(x)=x$$ limit  exists.

    For option C,
    Lets assume $$h(x) = f(x)+g(x)$$,
    Take limit on both sides as $$x\to c$$
    $$\lim_{x\to c}h(x) = \lim_{x\to c}(f(x)+g(x))$$
    And it is given that $$\lim_{x\to c}f(x)$$ exists.
    Using sum law of limits:
    If $$\lim_{x\to c}F(x)$$ and $$\lim_{x\to c}G(x)$$ exists, then $$\lim_{x\to c}(F(x)\pm G(x))$$ also exists.

    $$\therefore \lim_{x\to c}(h(x) - f(x)) = \lim_{x\to c}(f(x) + g(x) - f(x)) = \lim_{x\to c}g(x)$$ exists.

    For  option  D,  take  $$f(x)=-\dfrac{cosx}{x^2}$$ and $$g(x)=\dfrac { 1 }{ x^2 }$$.
    Limit of $$g(x)$$ and $$f(x)=-\dfrac{cosx}{x^2}$$  doesn't  exist  at  $$x=0$$, but for $$\displaystyle \lim _{ x\to 0} f(x)+g(x)$$ limit  exists.

    Hence option C.
  • Question 3
    1 / -0
    If $$\displaystyle y=\frac { x }{ a+\displaystyle\frac { x }{ b+\displaystyle\frac { x }{ a+\displaystyle\frac { x }{ b+.....\infty  }  }  }  } $$, then $$\cfrac{dy}{dx} =$$

    Solution
    $$\displaystyle y = \frac{x}{a+\frac{x}{b+y}}$$
    $$\Rightarrow \displaystyle y =\frac{x(b+y)}{ab+ay+x}$$
    $$\Rightarrow aby+ay^2+xy=bx+xy\Rightarrow aby+ay^2=bx$$
    Differentiating both sides w.r.t $$x$$
    $$\Rightarrow\displaystyle  (ab+2ay)\frac{dy}{dx}=b\therefore \frac{dy}{dx}=\frac{b}{ab+2ay}$$
  • Question 4
    1 / -0
    Let $$f(x)=\sin x$$, $$g(x)=\left [ x+1 \right ]$$ and $$g(f(x))=h(x)$$, where [.] is the greatest integer function. Then $$h^+\left ( \displaystyle \dfrac{\pi }{2} \right )$$ is
    Solution
    $$f(x) =\sin(x)$$ and $$g(x) = [1+x]$$

    $$\Rightarrow g(f(x)) = [1+\sin x]=h(x)$$

    $$h^{+}\left( \cfrac{\pi}{2}\right) =[1+\sin(\pi/2)]= 1$$
  • Question 5
    1 / -0
    Find the solution of $$\displaystyle \frac{dy}{dx}= \frac{2x+2y-2}{3x+y-5}.$$
  • Question 6
    1 / -0
    Given : $$f(x)=4x^3-6x^2\cos2a+3x \sin 2a.\sin 6a+\sqrt{\ln (2a-a^2)}$$ then 
    Solution
    $$f'(x)=12x^{2}-12xcos2a+3sin2a.sin6a+0$$
    $$f'(1/2)=\frac{12}{4}-\frac{12}{2}cos2a+3sin2a.sin6a$$
    $$=3-6cos2a+1.5(cos4a-cos8a)$$
    So, it will alwyas be greater than $$0$$
  • Question 7
    1 / -0
    $$\displaystyle \lim_{n\to\infty }\frac{n^{p}\sin ^{2}\left ( n! \right )}{n+1}$$, $$0<p<1$$, is equal to
    Solution
    We have,
    $$\displaystyle \lim_{n \rightarrow \infty} \dfrac{n^p sin^2 (n!)}{n + 1} = \lim_{n \rightarrow \infty} \dfrac{sin^2 (n!)}{1 + \dfrac{1}{n}} \times n^{p - 1}$$
    $$\Rightarrow \displaystyle \lim_{n \rightarrow \infty} \dfrac{n^p  sin^2 (n!)}{n + 1} = \lim_{n \rightarrow \infty} \dfrac{sin^2 (n!)}{n^{1 - p}} \times \dfrac{1}{1 + \dfrac{1}{n}}$$
    $$\displaystyle \Rightarrow \lim_{n \rightarrow \infty} \dfrac{n^p sin^2 (n!)}{n+1} = \dfrac{\text{An oscillating number}}{\infty} \times 1 = 0 \times 1 = 0$$.
    Hence, option 'A' is correct.
  • Question 8
    1 / -0
    $$f\left( x \right)=\begin{cases} \sin { x } \qquad ;\qquad x\neq n\pi ,n=0,\pm 1,\pm 2,\pm 3..... \\ 2\qquad \qquad ;\qquad otherwise \end{cases}$$ and $$g\left( x \right) =\begin{cases} { x }^{ 2 }+1\qquad ;\qquad x\neq 0 \\ 4\qquad \qquad ;\qquad x=0 \end{cases}.$$ 
    Then $$\lim _{ x\rightarrow 0 }{ g\left( f\left( x \right)\right)} $$ is
    Solution
    $$\lim _{ x\rightarrow 0 }{ g\left( f\left( x \right)  \right)  } =g\left( f\left( 0 \right)  \right) $$
    $$=g(2)={ 2 }^{ 2 }+1=5$$
  • Question 9
    1 / -0
    $$\displaystyle \lim_{x\rightarrow \dfrac{\pi}{2}}\dfrac{\left ( 1-\tan \dfrac{x}{2} \right )\left ( 1-\sin x \right )}{\left ( 1+\tan \dfrac{x}{2} \right )\left ( \pi -2x \right )^{3}}$$ is

    Solution
    $$\because \tan\left(\dfrac{\pi}{4} - \dfrac{x}{2}\right) = \dfrac{1 - \tan\dfrac{x}{2}}{1+\tan\dfrac{x}{2}}$$
    $$\therefore \displaystyle \lim_{x\rightarrow \dfrac{\pi}{2}}\dfrac{\tan \left ( \dfrac{\pi }{4}-\dfrac{x}{2} \right )\left ( 1-\sin x \right )}{4\left ( \dfrac{\pi -2x}{4} \right )\left ( \pi -2x \right )^{2}}$$

    $$\therefore  \displaystyle \lim_{x\rightarrow \dfrac{\pi}{2}}\dfrac{\tan \left ( \dfrac{\pi }{2}-\dfrac{x}{2} \right )\left(1-\cos \left ( \dfrac{\pi }{2}-x \right )\right)}{4.\left ( \dfrac{\pi }{4}-\dfrac{x}{2} \right )\left ( \pi -2x \right )^{2}}$$

    $$\therefore  \displaystyle\lim_{x\rightarrow \dfrac{\pi}{2}}\dfrac{\tan \left ( \dfrac{\pi }{2}-\dfrac{x}{2}\right )\cdot2\cdot\sin ^{2}\left ( \dfrac{\pi }{4}-\dfrac{x}{2} \right )}{4\cdot\left (\dfrac{\pi }{4}-\dfrac{x}{2} \right )\cdot4^{2}\cdot\left ( \dfrac{\pi -2x}{4} \right )^{2}}$$

    $$\displaystyle =\frac{1}{4}\times \frac{2}{16}=\frac{1}{32}$$
  • Question 10
    1 / -0
    Let $$f\left ( x \right )=\begin{cases}\sin x, x\neq n\pi 
                       \\ 2,  x=n\pi \end{cases}$$, where $$n\epsilon \mathbb{Z}$$ and
    $$g\left ( x \right )=\begin{cases}x^{2}+1, x\neq 2 \\
                  3, x=2 \end{cases}$$.
    Then $$\displaystyle \lim_{x\to 0}g\left ( f\left ( x \right ) \right )$$ is
    Solution
    $$\displaystyle \lim _{ x\rightarrow { 0 }^{ + } }{ g\left( f\left( x \right)  \right)  } =\displaystyle \lim _{ x\rightarrow { 0 }^{ + } }{ g\left( \sin { x }  \right)  } \\ =\displaystyle \lim _{ x\rightarrow { 0 }^{ + } }{ \left( \sin ^{ 2 }{ x } +1 \right)  } =0+1=1\\ \displaystyle \lim _{ x\rightarrow { 0 }^{ - } }{ g\left( f\left( x \right)  \right)  } =\displaystyle \lim _{ x\rightarrow { 0 }^{ - } }{ g\left( \sin { x }  \right)  } \\ =\displaystyle \lim _{ x\rightarrow { 0 }^{ - } }{ \left( \sin ^{ 2 }{ x } +1 \right)  }=1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now