Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    If $$\displaystyle \lim_{x\rightarrow \infty}\dfrac{x^3+1}{x^2+1}-(ax+b)=2$$, then

  • Question 2
    1 / -0

    The value of the constant $$\alpha$$ and $$\beta$$ such that $$\displaystyle \lim_{x\rightarrow \infty}\left(\displaystyle\frac{x^2+1}{x+1}-\alpha x-\beta\right)=0$$ are respectively.

  • Question 3
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 0}\dfrac {1 - \cos x}{x^{2}}$$ is ____

  • Question 4
    1 / -0

    The limit of $$\left[\frac{1}{x^2}+\frac{(2013)^x}{e^x-1}-\frac{1}{e^x-1}\right]$$ as $$x\rightarrow 0$$

  • Question 5
    1 / -0

    If the function $$f(x)$$ satisfies $$\displaystyle \lim_{x\rightarrow 1}\frac{f(x)-2}{x^2-1}=\pi$$, then $$\displaystyle \lim_{x\rightarrow 1}f(x)=$$

  • Question 6
    1 / -0

    $$f(x) = \log \left (e^{x} \left (\dfrac {x - 2}{x + 2}\right )^{\dfrac {3}{4}} \right ) \Rightarrow f'(0) =$$

  • Question 7
    1 / -0

    If $$f(x) = \sec (3x)$$, then $$f'\left (\dfrac {3\pi}{4}\right ) =$$

  • Question 8
    1 / -0

    If $$y = f(x^{2} + 2)$$ and $$f'(3) = 5$$, then $$\dfrac {dy}{dx}$$ at $$x = 1$$ is _____

  • Question 9
    1 / -0

    If f(x) is a function such that $$f^{\prime \prime}(x)+f(x)=0$$ and $$g(x)=[f(x)]^2+[f'(x)]^2$$ and g(3)=8, then $$g(8)= $$_____

  • Question 10
    1 / -0

    The limit of $$\displaystyle \sum_{n=1}^{1000}(-1)^nx^n$$ as $$x\rightarrow \infty$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now