Self Studies

Limits and Derivatives Test - 22

Result Self Studies

Limits and Derivatives Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle \lim_{x\rightarrow \infty}\dfrac{x^3+1}{x^2+1}-(ax+b)=2$$, then
    Solution
    Given $$\displaystyle \lim _{ x\rightarrow \infty  }{ \frac { { x }^{ 3 }+1 }{ { x }^{ 2 }+1 } -(ax+b)=2 } $$

    $$\Rightarrow \displaystyle \lim _{ x\rightarrow \infty  }{ (\frac { { (1-a)x }^{ 3 }-b{ x }^{ 2 }-ax-b+1 }{ { x }^{ 2 }+1 } )=2 }  $$

    For the limit to exist, the coefficient of $$x^{3}$$ must be zero because if it is not zero then the limit is infinite
    $$\Rightarrow a=1$$

    So the given one will reduce to $$\displaystyle \lim _{ x\rightarrow \infty  }{ (\frac { -b{ x }^{ 2 }-ax-b+1 }{ { x }^{ 2 }+1 } )=2 } $$

    If we apply the limit , we get $$-b=2$$
    $$\Rightarrow b=-2$$
    Therefore the correct option is $$D$$
  • Question 2
    1 / -0
    The value of the constant $$\alpha$$ and $$\beta$$ such that $$\displaystyle \lim_{x\rightarrow \infty}\left(\displaystyle\frac{x^2+1}{x+1}-\alpha x-\beta\right)=0$$ are respectively.
    Solution
    Simplifying the above expression gives us

    $$\displaystyle \lim_{x\rightarrow \infty}(\dfrac{x^{2}+1-\alpha x(x+1)-\beta(x+1)}{x+1})$$

    $$=\displaystyle \lim_{x\rightarrow \infty}(\dfrac{x^{2}(1-\alpha)-x(\alpha +\beta)+1-\beta)}{x+1})$$
    $$=0$$ implies that $$Numerator<Denominator$$.
    Hence coefficient of $$x^{2}$$ will be 0. Therefore $$\alpha=1$$.
    Hence
    $$\displaystyle \lim_{x\rightarrow \infty}(\dfrac{-x(1 +\beta)+1-\beta)}{x+1})=0$$

    Applying L'Hopital's Rule we get
    $$\displaystyle \lim_{x\rightarrow \infty}(\dfrac{-(1 +\beta)}{1})=0$$
    Or
    $$\beta+1=0$$
    Or
    $$\beta=-1$$.
    Hence
    $$(\alpha,\beta)=1,-1$$
  • Question 3
    1 / -0
    $$\displaystyle \lim_{x\rightarrow 0}\dfrac {1 - \cos x}{x^{2}}$$ is ____
    Solution
    $$\displaystyle \lim_{x\rightarrow 0}\dfrac {1 - \cos x}{x^{2}}=\lim_{x\to 0}\dfrac{2\sin^2\frac{x}{2}}{x^2}$$

    $$=\displaystyle \lim_{x\rightarrow 0}\dfrac {2\sin^2\frac{x}{2}}{4\left(\frac{x}{2}\right)^{2}}=\dfrac{1}{2}\lim_{x\to 0}\left( \dfrac{\sin\frac{x}{2}}{\frac{x}{2}}\right)^2=\dfrac{1}{2}\cdot 1=\dfrac{1}{2}$$ (using basic limit formula )
  • Question 4
    1 / -0
    The limit of $$\left[\frac{1}{x^2}+\frac{(2013)^x}{e^x-1}-\frac{1}{e^x-1}\right]$$ as $$x\rightarrow 0$$
    Solution
    $$\displaystyle \lim _{ x\rightarrow 0 }{ \left[ \cfrac { 1 }{ { x }^{ 2 } } +\cfrac { { \left( 2013 \right)  }^{ x }-1 }{ { e }^{ x }-1 }  \right]  } $$
    $$=\displaystyle \lim _{ x\rightarrow 0 }{ \left[ \cfrac { 1 }{ { x }^{ 2 } } +\cfrac { { \left( 2013 \right)  }^{ x }-1 }{ x } \times \cfrac { x }{ { e }^{ x }-1 }  \right]  } $$

    $$=\left( \displaystyle \lim _{ x\rightarrow 0 }{ \cfrac { 1 }{ { x }^{ 2 } }  }  \right) +\left( \log { 2013 }  \right) \times 1\quad \quad \left[ \displaystyle \lim _{ x\rightarrow 0 }{ \cfrac { { a }^{ x }-1 }{ x }  } =\log _{ e }{ a } ;\quad \displaystyle \lim _{ x\rightarrow 0 }{ \cfrac { { e }^{ x }-1 }{ x }  } =1 \right] $$

    $$=\infty +\log { 2013 } =\infty $$

    as $$x\rightarrow 0\Rightarrow $$Limit $$\rightarrow \infty $$
  • Question 5
    1 / -0
    If the function $$f(x)$$ satisfies $$\displaystyle \lim_{x\rightarrow 1}\frac{f(x)-2}{x^2-1}=\pi$$, then $$\displaystyle \lim_{x\rightarrow 1}f(x)=$$
    Solution
    It is given that, $$\displaystyle \lim_{x\rightarrow 1}\frac{f(x)-2}{x^2-1}=\pi$$ exists and equal to $$1$$.

    Clearly the denominator is zero at $$x=1$$, so for above limit to exist 
    numerator should also be zero, as x approaches $$1$$.
    Therefore, $$\displaystyle \lim_{x\to 1}f(x)=2$$

    Note: If $$\displaystyle \lim_{x\to 1}f(x) \neq 1$$, given limit will not exist 
  • Question 6
    1 / -0
    $$f(x) = \log \left (e^{x} \left (\dfrac {x - 2}{x + 2}\right )^{\dfrac {3}{4}} \right ) \Rightarrow f'(0) =$$
    Solution
    $$f(x) = \log \left (e^{x} \left (\dfrac {x - 2}{x + 2}\right )^{\dfrac {3}{4}}\right )$$

    $$f(x) = x + \dfrac {3}{4} [\log (x - 2) - \log (x + 2)]$$

    $$f'(x) = 1 + \dfrac {3}{4} \left [\dfrac {1}{x - 2} - \dfrac {1}{x + 2} \right ]$$

    $$f'(x) = \left [1 + \dfrac {3}{x^{2} - 4}\right ]$$

    $$f'(0) = 1 -\dfrac {3}{4} = \dfrac {1}{4}$$
  • Question 7
    1 / -0
    If $$f(x) = \sec (3x)$$, then $$f'\left (\dfrac {3\pi}{4}\right ) =$$
    Solution
    Given, $$f(x) = \sec(3x)$$
    We get $$f'\left( x \right) =3\sec(3x)\tan(3x)$$
    Therefore, we get $$f'\left( \dfrac { 3\pi  }{ 4 }  \right) =3\sec\left (\dfrac { 9\pi  }{ 4 }\right )\tan\left (\dfrac { 9\pi  }{ 4 } \right)$$
    $$=3\sec\left (\dfrac { \pi  }{ 4 } \right)\tan\left (\dfrac { \pi  }{ 4 }\right )$$
    $$=3\times \sqrt { 2 } \times 1$$
    $$=3\sqrt 2$$
  • Question 8
    1 / -0
    If $$y = f(x^{2} + 2)$$ and $$f'(3) = 5$$, then $$\dfrac {dy}{dx}$$ at $$x = 1$$ is _____
    Solution
    $$y=f(x^2+2)$$
    Using chain rule of differentiation
    $$\dfrac{dy}{dx}=\dfrac{d}{d(x^2+2)}[f(x^2+2)]\cdot \dfrac{d}{dx}(x^2+2)$$
    $$\quad =f'(x^2+2)\cdot 2x=2xf'(x^2+2)$$

    Hence $$\dfrac{dy}{dx}\bigg|_{x=1}=2\cdot 1\cdot f'(1^2+2)=2\cdot f'(3)=2\cdot 5=10$$
  • Question 9
    1 / -0
    If f(x) is a function such that $$f^{\prime \prime}(x)+f(x)=0$$ and $$g(x)=[f(x)]^2+[f'(x)]^2$$ and g(3)=8, then $$g(8)= $$_____
    Solution
    We have,  $$g(x)=[f(x)]^2+[f'(x)]^2$$
    Differentiate the function g(x)
    $$\Rightarrow g'(x)=2f(x)f'(x)+2f'(x)f''(x)$$, use chain rule
    $$=2f'(x)[f(x)+f''(x)]=2f'(x)(0)=0$$, use the given condition 
    Hence $$g(x)$$ is  a constant function 
    $$\Rightarrow g(x)=c$$, constant 
    But $$g(3)=8$$, so $$g(x)=8$$, for all real x
    Hence $$g(8)=8$$
  • Question 10
    1 / -0
    The limit of $$\displaystyle \sum_{n=1}^{1000}(-1)^nx^n$$ as $$x\rightarrow \infty$$
    Solution
    $$\sum _{ n=1 }^{ 1000 }{ { \left( -1 \right)  }^{ n }{ x }^{ n } } =-x+{ x }^{ 2 }-{ x }^{ 3 }+{ x }^{ 4 }+....$$
    It is in GP
    $$S=\cfrac { -x\left( { (-x) }^{ 1000 }-1 \right)  }{ (-x)-1 } $$

    $$\displaystyle \lim _{ x\rightarrow \infty  }{ \sum _{ n=1 }^{ 1000 }{ { \left( -1 \right)  }^{ n }{ x }^{ n } }  } =\displaystyle \lim _{ x\rightarrow \infty  }{ S } =\displaystyle \lim _{ x\rightarrow \infty  }{ \cfrac { x\left( { x }^{ 1000 }-1 \right)  }{ x+1 }  } $$

    $$=\displaystyle \lim _{ x\rightarrow \infty  }{ \cfrac { \left( { x }^{ 1000 }-1 \right)  }{ 1+\cfrac { 1 }{ x }  }  } =\cfrac { { \infty  }^{ 1000 }-1 }{ 1+0 } =\infty $$ 

     $$as \left( x\rightarrow \infty ;\cfrac { 1 }{ x } \rightarrow \infty \right) $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now