Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    If $$y=\sec(\tan^{-1}x)$$, then $$\displaystyle\frac{dy}{dx}$$ at $$x=1$$ is equal to.

  • Question 2
    1 / -0

    If $$\displaystyle \lim _{ n\rightarrow \infty  }{ \cfrac { n.{ 3 }^{ n } }{ n{ \left( x-2 \right)  }^{ n }+n.{ 3 }^{ n+1 }-{ 3 }^{ n } }  } =\cfrac { 1 }{ 3 } $$, then the range of $$x$$ is (When $$n\in N$$)

  • Question 3
    1 / -0

    If $$y = |\cos x| + |\sin x|$$, then $$\dfrac {dy}{dx}$$ at $$x = \dfrac {2\pi}{3}$$ is

  • Question 4
    1 / -0

    The derivative of $$f\left( \tan { x }  \right) $$ with respect to $$g(\sec x)$$ at $$\quad x=\cfrac { \pi  }{ 4 } $$, where $$f'(1)=2;\quad g'(\sqrt { 2 } )=4$$ is

  • Question 5
    1 / -0

    If $$|x| < 1$$, then $$\dfrac{d}{dx}\left[1+\dfrac{p}{q}x+\dfrac{p(p+q)}{2!}\left(\dfrac{x}{q}\right)^2+\dfrac{p(p+q)(p+2q)}{3!}\left(\dfrac{x}{q}\right)^3....\infty\right]=$$

  • Question 6
    1 / -0

    $$\lim _{ x\rightarrow 3 }{ \left( { x }^{ 3 }-4 \right) /\left( x+1 \right)  } =$$

  • Question 7
    1 / -0

    Differentiate the following w.r.t. $$x$$.
    $$\sin x\ log x$$.

  • Question 8
    1 / -0

    Differentiate the following w.r.t. $$x$$.
    $$\tan^{3}x$$.

  • Question 9
    1 / -0

    Given $$y=\dfrac {3}{x}, \dfrac {dy}{dx}=$$

  • Question 10
    1 / -0

    Differentiate the following w.r.t. $$x$$.
    $$\tan x^{2}$$.

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now