Self Studies

Limits and Derivatives Test - 24

Result Self Studies

Limits and Derivatives Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$y=\sec(\tan^{-1}x)$$, then $$\displaystyle\frac{dy}{dx}$$ at $$x=1$$ is equal to.
    Solution
    Given, $$y=\sec(\tan^{-1}x)$$ 
    $$=\sec(\sec^{-1}\sqrt{1+x^2})$$
    $$\Rightarrow y=\sqrt{1+x^2}$$
    $$\therefore \displaystyle\frac{dy}{dx}=\frac{2x}{2\sqrt{1+x^2}}$$
    $$\Rightarrow \displaystyle\frac{dy}{dx}=\frac{x}{\sqrt{1+x^2}}$$
    $$\Rightarrow \left(\displaystyle\frac{dy}{dx}\right)_{x=1}=\displaystyle\frac{1}{\sqrt{2}}$$.
  • Question 2
    1 / -0
    If $$\displaystyle \lim _{ n\rightarrow \infty  }{ \cfrac { n.{ 3 }^{ n } }{ n{ \left( x-2 \right)  }^{ n }+n.{ 3 }^{ n+1 }-{ 3 }^{ n } }  } =\cfrac { 1 }{ 3 } $$, then the range of $$x$$ is (When $$n\in N$$)
    Solution
    $$\displaystyle\lim_{n\rightarrow \infty}\dfrac{n.3^n}{n(x-2)^n+n3^{n+1}-3^n}=\displaystyle\lim_{n\rightarrow \infty}\dfrac{1}{\left(\dfrac{x-2}{3}\right)^n+3-\dfrac{1}{n}}=\dfrac{1}{3}$$
    We know $$\displaystyle\lim_{n\rightarrow \infty}\dfrac{1}{n}=0$$
    then we want $$\dfrac{|x-2|}{3} < 1$$  $$\rightarrow \because$$ if $$a < 1, a^n=0$$ for $$n\rightarrow \infty$$
    $$x < 5$$
    $$x > -1$$
    $$\therefore (-1, 5)$$.

  • Question 3
    1 / -0
    If $$y = |\cos x| + |\sin x|$$, then $$\dfrac {dy}{dx}$$ at $$x = \dfrac {2\pi}{3}$$ is
    Solution
    According to question,
    $$|\cos x| = -\cos x$$
    $$|\sin x| = \sin x$$
    $$\therefore \dfrac {dy}{dx} = \sin x + \cos x$$
    $$\therefore \left (\dfrac {dy}{dx}\right )_{\dfrac {2\pi}{3}} = \dfrac {\sqrt {3}}{2} - \dfrac {1}{2} = \dfrac {\sqrt {3} - 1}{2}$$.
  • Question 4
    1 / -0
    The derivative of $$f\left( \tan { x }  \right) $$ with respect to $$g(\sec x)$$ at $$\quad x=\cfrac { \pi  }{ 4 } $$, where $$f'(1)=2;\quad g'(\sqrt { 2 } )=4$$ is
    Solution
    $$\cfrac { df\left( \tan { x }  \right)  }{ dg\left( \sec { x }  \right)  } =\cfrac { f'\left( \tan { x }  \right) \sec { x }  }{ g'\left( \sec { x }  \right) \tan { x }  } =\cfrac { f'\left( \tan { x }  \right)  }{ g'\left( \sec { x }  \right)  } .\cfrac { 1 }{ \cos { x }  } $$
    $$=\cfrac { f'\left( \tan { x }  \right)  }{ g'\left( \sec { x }  \right)  } .\cfrac { 1 }{ \sin { x }  } $$
    $$\therefore { \left[ \cfrac { df\left( \tan { x }  \right)  }{ dg\left( \sec { x }  \right)  }  \right]  }_{ x=\pi /4 }^{  }=\cfrac { f'(1) }{ g'(\sqrt { 2 } ) } .\sqrt { 2 } =\cfrac { 2 }{ 4 } \times \sqrt { 2 } =\cfrac { 1 }{ \sqrt { 2 }  } $$
  • Question 5
    1 / -0
    If $$|x| < 1$$, then $$\dfrac{d}{dx}\left[1+\dfrac{p}{q}x+\dfrac{p(p+q)}{2!}\left(\dfrac{x}{q}\right)^2+\dfrac{p(p+q)(p+2q)}{3!}\left(\dfrac{x}{q}\right)^3....\infty\right]=$$
    Solution
    $$\dfrac{d}{dx}\left\{1+\dfrac{px}{q}+\dfrac{p(p+q)}{2!}\dfrac{x^2}{q^2}+\dots\right\}=\dfrac{p}{q}+\dfrac{p(p+q)}{2!}\dfrac{2x}{q^2}+\dfrac{p(p+q)(p+2q)}{3!}\dfrac{3x^2}{q^3}+\dots$$
    $$=\dfrac{p}{q}\left(1+\dfrac{(p+q)}{1!}\dfrac{x}{q}+\dfrac{(p+q)(p+2q)}{2!}\dfrac{x^2}{q^2}+\dots\right)$$
    Now, consider $$(1-a)^n=1-na+\dfrac{n(n-1)}{2!}x^2+\dots$$
    Put $$a=x$$ and $$n=-\left(1+\dfrac{p}{q}\right)$$
    $$\therefore (1-x)^{-\left(1+\frac{p}{q}\right)}=1+\dfrac{(p+q)}{q}x+\left[-\dfrac{(p+q)}{q}\left(-\dfrac{(p+q)}{q}-1\right)\right]\dfrac{x^2}{2!}\dots$$
    $$=1+\dfrac{(p+q)}{q}x+\left[\dfrac{(p+q)}{q}\left(\dfrac{(p+q+q)}{q}\right)\right]\dfrac{x^2}{2!}\dots$$
    $$=1+\dfrac{(p+q)}{q}x+\dfrac{(p+q)(p+2q)}{q^2}\dfrac{x^2}{2!}\dots$$
    Hence, 
    $$\dfrac{d}{dx}\left\{1+\dfrac{px}{q}+\dfrac{p(p+q)}{2!}\dfrac{x^2}{q^2}+\dots\right\}=\dfrac{p}{q}(1-x)^{-\left(1+\frac{p}{q}\right)}$$
    This is the required answer.
  • Question 6
    1 / -0
    $$\lim _{ x\rightarrow 3 }{ \left( { x }^{ 3 }-4 \right) /\left( x+1 \right)  } =$$
  • Question 7
    1 / -0
    Differentiate the following w.r.t. $$x$$.
    $$\sin x\ log x$$.
    Solution
    $$\cfrac { d }{ dx } \sin { x } \log { x } $$
    $$=\left\{ \cfrac { d }{ dx } \sin { (x) }  \right\} \log { x } +\sin { x } .\cfrac { d }{ dx } \left( \log { \left( x \right)  }  \right) $$
    $$=\log { x } .\cos { x } +\sin { x } .\cfrac { 1 }{ x } $$
    $$=\cfrac { \sin { x }  }{ x } +\log { x } .\cos { x }$$
  • Question 8
    1 / -0
    Differentiate the following w.r.t. $$x$$.
    $$\tan^{3}x$$.
    Solution
    $$\cfrac { d }{ dx } \tan ^{ 3 }{ x } $$
    $$=3\tan ^{ 2 }{ x } .\cfrac { d }{ dx } \tan { x } .\cfrac { d }{ dx } \left( x \right) $$
    $$=3\tan ^{ 2 }{ x }\sec ^{ 2 }{ x } $$
  • Question 9
    1 / -0
    Given $$y=\dfrac {3}{x}, \dfrac {dy}{dx}=$$
    Solution
    $$y=\dfrac{3}{x}$$
    differentiating with respect to x
    $$\dfrac{dy}{dx}=\dfrac{-3}{x^2}$$

  • Question 10
    1 / -0
    Differentiate the following w.r.t. $$x$$.
    $$\tan x^{2}$$.
    Solution
    $$\cfrac { d }{ dx } \tan { \left( { x }^{ 2 } \right)  } $$
    $$=\sec ^{ 2 }{ \left( { x }^{ 2 } \right)  } .\cfrac { d }{ dx } \left( { x }^{ 2 } \right) $$
    $$=\sec ^{ 2 }{ \left( { x }^{ 2 } \right)  } .2x$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now