Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    Differentiate the following w.r.t. $$x$$.
    $$\sin^{2} \sqrt {x}$$.

  • Question 2
    1 / -0

    $$\lim _{ x\rightarrow { 0 }^{ + } }{ \left( { \left( x\cos { x }  \right)  }^{ x }+{ \left( \cos { x }  \right)  }^{ \frac { 1 }{ \ln { x }  }  }+{ \left( x\sin { x }  \right)  }^{ x } \right)  } $$ is equal to

  • Question 3
    1 / -0

    $$\dfrac{\displaystyle \lim_{h \rightarrow 0}(h+1)^2}{\displaystyle \lim_{h\rightarrow 0}(1+h)^{2/h}}$$ is equal to

  • Question 4
    1 / -0

    $$\mathop {\lim}\limits_{x \to \frac{\pi}{2}} \tan x = $$

  • Question 5
    1 / -0

    $$\lim _{ x\rightarrow 0 }{ \log _{ \left( \tan ^{ 2 }{ x }  \right)  }{ \left( \tan ^{ 2 }{ 2x }  \right) = }  }$$

  • Question 6
    1 / -0

    $$\displaystyle \lim_{n \rightarrow \infty} {^{n}C_{c}}\left(\dfrac {m}{n}\right)^{x}\left(1-\dfrac {m}{n}\right)^{n-x}$$ equal to

  • Question 7
    1 / -0

    $$\underset{h \rightarrow 0}{lim} \dfrac{\sqrt{x + h} -\sqrt{x}}{h}$$ is equal to 

  • Question 8
    1 / -0

    Let $$y=a\cos t+b\sin t$$ then $$\dfrac{d^2y}{dt^2}=$$

  • Question 9
    1 / -0

    The difference of slopes of lines represent by $${y^2} - 2xy{\sec ^2}\alpha  + \left( {3 + {{\tan }^2}\alpha } \right)\left( {{{\tan }^2}\alpha  - 1} \right){x^2} = 0$$ is

  • Question 10
    1 / -0

    $$\lim\limits_{x\to 0}\dfrac{1-\cos x }{x^2}=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now