Self Studies

Limits and Derivatives Test - 25

Result Self Studies

Limits and Derivatives Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Differentiate the following w.r.t. $$x$$.
    $$\sin^{2} \sqrt {x}$$.
    Solution
    $$\cfrac { d }{ dx } \sin ^{ 2 }{ \sqrt { x }  } $$
    $$=2\sin { \left( \sqrt { x }  \right)  } .\cfrac { d }{ dx } \left( \sin { \sqrt { x }  }  \right) .\cfrac { d }{ dx } \sqrt { x } $$
    $$=2\sin { \sqrt { x }  } .\cos { \sqrt { x }  } .\cfrac { 1 }{ 2\sqrt { x }  } $$
    $$=\sin { \left( 2\sqrt { x }  \right)  } .\cfrac { 1 }{ 2\sqrt { x }  } \quad \left[ \because \sin { 2\theta  } =2\sin { \theta  } \cos { \theta  }  \right] $$
  • Question 2
    1 / -0
    $$\lim _{ x\rightarrow { 0 }^{ + } }{ \left( { \left( x\cos { x }  \right)  }^{ x }+{ \left( \cos { x }  \right)  }^{ \frac { 1 }{ \ln { x }  }  }+{ \left( x\sin { x }  \right)  }^{ x } \right)  } $$ is equal to
    Solution
    $$\lim_{x\rightarrow 0^+}(x\cos x)^x$$

    $$\lim_{x\rightarrow 0^+} x^x.\cos ^x x$$

    $$\lim_{x\rightarrow 0^+} e^{x\ln x}.\cos ^x x$$

    $$ 1\times 1$$

    $$1$$

    $$\therefore \lim_{x\rightarrow 0^+}(x\cos x)^x=1$$
    ------------------------------------------------------

    $$\lim_{x\rightarrow 0^+}(x\sin x)^x$$

    $$\lim_{x\rightarrow 0^+} x^x.\sin ^x x$$

    $$\lim_{x\rightarrow 0^+} e^{x\ln x}.\sin ^x x$$

    $$ 1\times 1$$

    $$1$$

    $$\therefore \lim_{x\rightarrow 0^+}(x\sin x)^x=1$$

    ---------------------------------------------------------

    $$\lim_{x\rightarrow 0^+} (\csc x)^{\frac{1}{\ln x}}$$

    $$\lim_{x\rightarrow 0^+} (\dfrac{1}{\sin x})^{\frac{1}{\ln x}}$$

    $$y= \lim_{x\rightarrow 0^+} (\dfrac{1}{\sin x})^{\frac{1}{\ln x}}$$

    $$\ln y =\lim_{x\rightarrow 0^+} \dfrac{1}{\ln x}(-\ln (\sin x))$$

    $$\ln y =\lim_{x\rightarrow 0^+} \dfrac{1}{\frac{1}{x}}\left ( -\frac{\cos x}{\sin x} \right )$$

    $$\ln y =\lim_{x\rightarrow 0^+}(-\cos x)$$

    $$\ln y = -1$$

    $$y=e^{-1}$$

    $$y=\dfrac{1}{e}$$

    $$\therefore \lim_{x\rightarrow 0^+} (\csc x)^{\frac{1}{\ln x}}=\dfrac{1}{e}$$
      
    ------------------------------------------------------------------------------------
    ------------------------------------------------------------------------------------

    $$\lim_{x\rightarrow 0^+} ((x\cos x)^x+(\csc x)^{\frac{1}{\ln x}}+(x\sin x)^x)$$

    $$=1+\dfrac{1}{e}+1$$

    $$=2+\dfrac{1}{e}$$
  • Question 3
    1 / -0
    $$\dfrac{\displaystyle \lim_{h \rightarrow 0}(h+1)^2}{\displaystyle \lim_{h\rightarrow 0}(1+h)^{2/h}}$$ is equal to
  • Question 4
    1 / -0
    $$\mathop {\lim}\limits_{x \to \frac{\pi}{2}} \tan x = $$
    Solution
    $$L=\displaystyle\lim_{x\rightarrow \frac{\pi}{2}}\tan x$$
    $$\Rightarrow$$  $$L=\tan\dfrac{\pi}{2}$$        [ Applying limit ]
    We know that value of $$\tan\dfrac{\pi}{2}$$ is does not exist.
    $$\therefore$$  $$\displaystyle\lim_{x\rightarrow \frac{\pi}{2}}\tan x=$$ does not exist

  • Question 5
    1 / -0
    $$\lim _{ x\rightarrow 0 }{ \log _{ \left( \tan ^{ 2 }{ x }  \right)  }{ \left( \tan ^{ 2 }{ 2x }  \right) = }  }$$
    Solution

    $$\mathop {\lim }\limits_{x \to 0} {\log _{{{\tan }^2}x}}\left( {{{\tan }^2}2x} \right)$$


    Let,

    $$\begin{array}{l} y={ \log _{ { { \tan   }^{ 2 } }x }  }{ \tan ^{ 2 }  }2x \\ =\log { \tan ^{ 2 }  } 2x={ \left( { { { \tan   }^{ 2 } }x } \right) ^{ y } } \\ =2\log  \tan  2x=2y\log  \tan  x \\ \Rightarrow y=\dfrac { { \log  \tan  2x } }{ { \log  \tan  x } }  \\ \Rightarrow { \lim   }_{ x\to 0 }y={ \lim   }_{ x\to 0 }\dfrac { { \log  \tan  2x } }{ { \log  \tan  x } }  \end{array}$$


    Using L-Hospital Rule

    $$\begin{array}{l} \Rightarrow { \lim   }_{ x\to 0 }y={ \lim   }_{ x\to 0 }\dfrac { { \dfrac { 1 }{ { \tan  2x } } \times { { \sec   }^{ 2 } }2x\times 2 } }{ { \dfrac { 1 }{ { \tan  x } } { { \sec   }^{ 2 } }x } }  \\ \Rightarrow { \lim   }_{ x\to 0 }y={ \lim   }_{ x\to 0 }\dfrac { { 2{ { \sec   }^{ 2 } }2x } }{ { \tan  2x } } \times \dfrac { { \tan  x } }{ { { { \sec   }^{ 2 } }x } }  \\ \Rightarrow { \lim   }_{ x\to 0 }y={ \lim   }_{ x\to 0 }\dfrac { { 2\tan  x } }{ { \tan  2x } } \, \, \, \, \, \, \left( { { \lim   }_{ x\to 0 }\sec  x=4 } \right)  \end{array}$$

    $$\begin{array}{l} \Rightarrow { \lim   }_{ x\to 0 }y={ \lim   }_{ x\to 0 }\dfrac { { 2\dfrac { { \tan  x } }{ x } \times x } }{ { \dfrac { { \tan  2x } }{ { 2x } } \times 2x } }  \\ \Rightarrow { \lim   }_{ x\to 0 }y={ \lim   }_{ x\to 0 }\, \, \, 1\, \, \left( { { \lim   }_{ x\to 0 }\dfrac { { \tan  x } }{ x } =1 } \right)  \\ \Rightarrow { \lim   }_{ x\to 0 }{ \log _{ { { \tan   }^{ 2 } }x }  }\left( { { { \tan   }^{ 2 } }2x } \right) =1 \end{array}$$

  • Question 6
    1 / -0
    $$\displaystyle \lim_{n \rightarrow \infty} {^{n}C_{c}}\left(\dfrac {m}{n}\right)^{x}\left(1-\dfrac {m}{n}\right)^{n-x}$$ equal to
    Solution
    Given $$\displaystyle\lim_{n\rightarrow \infty}{^{n}}C_x \bigg(\dfrac{m}{n}\bigg)^{x}\bigg(1-\dfrac{m}{n}\bigg)^{n-x}=$$coefficient of $$x$$ in $$\displaystyle\lim_{n\rightarrow\infty}\bigg(\dfrac{m}{n}+1-\dfrac{m}{n}\bigg)^{n}$$
                                                                       $$=$$coeeficient of $$x$$ in $$\displaystyle\lim_{n\rightarrow\infty}\bigg(1\bigg)^{n}=$$coefficient of $$x$$ in $$1=0$$
  • Question 7
    1 / -0
    $$\underset{h \rightarrow 0}{lim} \dfrac{\sqrt{x + h} -\sqrt{x}}{h}$$ is equal to 
    Solution
    The given limit can be written as,

    $$\underset { h\rightarrow 0 }{ lim } \dfrac { \sqrt { x+h } -\sqrt { x }  }{ h } =\underset { x+h\rightarrow x }{ lim } \dfrac { \sqrt { x+h } -\sqrt { x }  }{ (x+h)-x } $$

    We know that,
    $$\underset { x\rightarrow a }{ lim } \dfrac { { x }^{ n }-{ a }^{ n } }{ x-a } =n{ a }^{ n-1 }$$

    So, the given limit is,
    $$=\dfrac { 1 }{ 2 } { x }^{ \left( \dfrac { 1 }{ 2 } -1 \right)  }=\dfrac { 1 }{ 2\sqrt { x }  } $$
  • Question 8
    1 / -0
    Let $$y=a\cos t+b\sin t$$ then $$\dfrac{d^2y}{dt^2}=$$
    Solution
    Given,
    $$y=a\cos t+b\sin t$$......(1).
    Now differentiating both sides with respect to $$t$$ we get,
    $$\dfrac{dy}{dt}=-a\sin t+b\cos t$$
    Again differentiating both sides with respect to $$t$$ we get,
    $$\dfrac{d^2y}{dt^2}=-a\cos t-b\sin t$$
    or, $$\dfrac{d^2y}{dt^2}=-y$$. [ Using (1)]
  • Question 9
    1 / -0
    The difference of slopes of lines represent by $${y^2} - 2xy{\sec ^2}\alpha  + \left( {3 + {{\tan }^2}\alpha } \right)\left( {{{\tan }^2}\alpha  - 1} \right){x^2} = 0$$ is
    Solution
    $$y^2-2xy\sec ^2\alpha +(3+\tan^2\alpha)(\tan ^2\alpha -1)x^2=0$$
    Divide by $$x^2$$ & substitute $$m=y/x$$
    $$m^2-2m\sec ^2 \alpha+(3+\tan^2\alpha)(\tan^2\alpha -1)=0$$m_1
    Let $$m_1$$ & $$m_2$$ be note of equation
    $$(m_1-m_2)^2=(m_1+m_2)^2-4m_1m_2\left[\begin{matrix}m_1+m_2=-b/a\\m_1m_2=c/a \end{matrix}\right.$$
    $$(m_1-m_2)^2(-2\sec\alpha)^2-4(3\tan ^2\alpha -3+\tan ^4 \alpha -\tan ^2\alpha)$$
    $$=4\sec ^4\alpha -4(\tan ^4\alpha +2 \tan ^2 \alpha -3)$$
    $$=4(\sec ^4 \alpha -\tan ^4\alpha )-8\tan ^2\alpha +12$$
    $$=\dfrac{(\sec^2\alpha -\tan ^2\alpha)}{1}(\sec ^2\alpha +\tan ^2\alpha )-8\tan ^2\alpha +12$$
    $$4\sec^2\alpha +4\tan ^2\alpha -4\tan ^2\alpha -4\tan ^2\alpha +12$$
    $$4(\sec ^2\alpha -\tan ^2\alpha)+12$$
    $$4(1)+12$$
    $$(m_1-m_2)^2=16$$
    $$m_1-m_2=4$$

  • Question 10
    1 / -0
    $$\lim\limits_{x\to 0}\dfrac{1-\cos x }{x^2}=$$
    Solution
    Now,
    $$\lim\limits_{x\to 0}\dfrac{1-\cos x}{x^2}$$
    $$=\lim\limits_{x\to 0}\dfrac{2\sin^2\dfrac{x}{2}}{x^2}$$
    $$=\dfrac{1}{2}\lim\limits_{x\to 0}\dfrac{\sin^2\dfrac{x}{2}}{\dfrac{x^2}{4}}$$
    $$=\dfrac{1}{2}\left(\lim\limits_{\dfrac{x}{2}\to 0}\dfrac{\sin\dfrac{x}{2}}{\dfrac{x}{2}}\right)^2$$
    $$=\dfrac{1}{2}.1$$
    $$=\dfrac{1}{2}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now