Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    $$ \lim _{ x\rightarrow 1 }{ \dfrac { \sqrt { 1-\cos { 2\left( x-1 \right)  }  }  }{ x-1 }  }$$

  • Question 2
    1 / -0

    If $$f(x) = 2x^9 - 5x^8 + 7x^6 - 15x^4 + 5x + 7$$, then $$\underset{x \rightarrow 0}{\lim} \dfrac{f (1 - \alpha) - f(1)}{\alpha^3 + 3 \alpha}$$ is 

  • Question 3
    1 / -0

    If $$f(x) = 3x^{10} - 7x^8 + 5x^6 - 21x^3 + 3x^2 - 7$$, then $$\underset{a \rightarrow 0}{\lim} \dfrac{f(1 - \alpha) - f(1)}{\alpha^3 + 3 \alpha}$$ is 

  • Question 4
    1 / -0

    $$\displaystyle \lim_{n \rightarrow \infty}\dfrac {1^{2}+2^{2}+3^{2}+....+n^{2}}{n^{3}}$$ is equal to

  • Question 5
    1 / -0

    If $$y=|\cos x|+|\sin x|$$, then $$\dfrac{dy}{dx}$$ at $$x=\dfrac{2\pi}{3}$$ is 

  • Question 6
    1 / -0

    The value of $$\lim_{x\rightarrow o}\dfrac{\sqrt{\dfrac{1}{2}(1-cos 2 x)}}{x}$$

  • Question 7
    1 / -0

    If $$y=|\cos x|+|\sin x|$$, then $$\dfrac {dy}{dx}$$ at $$x=\dfrac {2\pi}{3}$$  is

  • Question 8
    1 / -0

    The value of $$\underset { x\longrightarrow \infty  }{ Lim } \dfrac{d}{dx}\overset { \sqrt { 3 }  }{ \underset { -\sqrt { 3 }  }{ \int }  } \dfrac{r^3}{(r+1)(r-1)}$$dr,is

  • Question 9
    1 / -0

    $$\mathop {\lim }\limits_{x \to 0} \,\dfrac{1}{x}\,{\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$$ is equal to

  • Question 10
    1 / -0

    $$\mathop {\lim }\limits_{x \to 0} \dfrac{1}{x}{\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$$ is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now